
��������	�
��

������������

������������

����������������

Revision 2.3

KK

REVISION REVISION HISTORY DATE

1.0 Original issue 6/22/92

2.0 Incorporated connector and expansion board specification 4/30/93

2.1 Incorporated clarifications and added 66 MHz chapter 6/1/95

2.2 Incorporated ECNs and improved readability 12/18/98

2.3 Incorporated ECNs, errata, and deleted 5 volt only keyed
add-in cards

10/31/01

The PCI Special Interest Group disclaims all warranties and liability for the use of this document
and the information contained herein and assumes no responsibility for any errors that may appear
in this document, nor does the PCI Special Interest Group make a commitment to update the
information contained herein.

Contact the PCI Special Interest Group office to obtain the latest revision of the specification.

Questions regarding the PCI specification or membership in the PCI Special Interest Group may
be forwarded to:

PCI Special Interest Group
5440 SW Westgate Drive
Suite 217
Portland, Oregon 97221
Phone: 800-433-5177 (Inside the U.S.)

503-291-2569 (Outside the U.S.)
Fax: 503-297-1090
e-mail administration@pcisig.com
http://www.pcisig.com

DISCLAIMER

This PCI Local Bus Specification is provided "as is" with no warranties whatsoever, including any
warranty of merchantability, noninfringement, fitness for any particular purpose, or any warranty
otherwise arising out of any proposal, specification, or sample. The PCI SIG disclaims all liability
for infringement of proprietary rights, relating to use of information in this specification. No
license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

ALPHA is a registered trademark of Digital Equipment Corporation.

FireWire is a trademark of Apple Computer, Inc.

Token Ring and VGA are trademarks and PS/2, IBM, Micro Channel, OS/2, and PC AT are
registered trademarks of IBM Corporation.

Windows, MS-DOS, and Microsoft are registered trademarks of Microsoft Corporation.

Tristate is a registered trademark of National Semiconductor.

NuBus is a trademark of Texas Instruments.

Ethernet is a registered trademark of Xerox Corporation.

All other product names are trademarks, registered trademarks, or service marks of their respective
owners.

Copyright © 1992, 1993, 1995, 1998, 2001 PCI Special Interest Group

Revision 2.3

KKK

Contents
Preface
Specification Supersedes Earlier Documents...xiii

Incorporation of Engineering Change Notices (ECNs)..xiii

Document Conventions .. xiv

Chapter 1 Introduction
1.1. Specification Contents.. 1

1.2. Motivation .. 1

1.3. PCI Local Bus Applications... 2

1.4. PCI Local Bus Overview.. 3

1.5. PCI Local Bus Features and Benefits... 4

1.6. Administration.. 6

Chapter 2 Signal Definition
2.1. Signal Type Definition ... 8

2.2. Pin Functional Groups.. 8
2.2.1. System Pins.. 8

2.2.2. Address and Data Pins ... 9

2.2.3. Interface Control Pins .. 10

2.2.4. Arbitration Pins (Bus Masters Only) ... 11

2.2.5. Error Reporting Pins .. 12

2.2.6. Interrupt Pins (Optional).. 13

2.2.7. Additional Signals ... 15

2.2.8. 64-Bit Bus Extension Pins (Optional) ... 17

2.2.9. JTAG/Boundary Scan Pins (Optional) .. 18

2.2.10. System Management Bus Interface Pins (Optional)... 19

2.3. Sideband Signals .. 19

2.4. Central Resource Functions ... 19

Revision 2.3

KX

Chapter 3 Bus Operation
3.1. Bus Commands .. 21

3.1.1. Command Definition ... 21

3.1.2. Command Usage Rules.. 23

3.2. PCI Protocol Fundamentals.. 26
3.2.1. Basic Transfer Control... 26

3.2.2. Addressing ... 27
3.2.2.1. I/O Space Decoding.. 28
3.2.2.2. Memory Space Decoding ... 28
3.2.2.3. Configuration Space Decoding... 30

3.2.3. Byte Lane and Byte Enable Usage .. 38

3.2.4. Bus Driving and Turnaround ... 39

3.2.5. Transaction Ordering and Posting ... 40
3.2.5.1. Transaction Ordering and Posting for Simple Devices... 41
3.2.5.2. Transaction Ordering and Posting for Bridges ... 42

3.2.6. Combining, Merging, and Collapsing.. 44

3.3. Bus Transactions .. 46
3.3.1. Read Transaction ... 47

3.3.2. Write Transaction .. 48

3.3.3. Transaction Termination.. 49
3.3.3.1. Master Initiated Termination .. 49
3.3.3.2. Target Initiated Termination... 51
3.3.3.3. Delayed Transactions.. 61

3.4. Arbitration .. 68
3.4.1. Arbitration Signaling Protocol... 70

3.4.2. Fast Back-to-Back Transactions .. 72

3.4.3. Arbitration Parking .. 74

3.5. Latency... 75
3.5.1. Target Latency ... 75

3.5.1.1. Target Initial Latency ... 75
3.5.1.2. Target Subsequent Latency... 77

3.5.2. Master Data Latency.. 78

3.5.3. Memory Write Maximum Completion Time Limit... 78

3.5.4. Arbitration Latency.. 79
3.5.4.1. Bandwidth and Latency Considerations ... 80
3.5.4.2. Determining Arbitration Latency.. 82
3.5.4.3. Determining Buffer Requirements.. 87

3.6. Other Bus Operations ... 88
3.6.1. Device Selection .. 88

3.6.2. Special Cycle ... 90

3.6.3. IDSEL Stepping... 91

3.6.4. Interrupt Acknowledge .. 93

3.7. Error Functions... 93

Revision 2.3

X

3.7.1. Parity Generation ... 94

3.7.2. Parity Checking ... 95

3.7.3. Address Parity Errors... 95

3.7.4. Error Reporting.. 95
3.7.4.1. Data Parity Error Signaling on PERR# .. 96
3.7.4.2. Other Error Signaling on SERR# ... 97
3.7.4.3. Master Data Parity Error Status Bit .. 98
3.7.4.4. Detected Parity Error Status Bit ... 98

3.7.5. Delayed Transactions and Data Parity Errors.. 98

3.7.6. Error Recovery... 100

3.8. 64-Bit Bus Extension ... 101
3.8.1. Determining Bus Width During System Initialization .. 104

3.9. 64-bit Addressing ... 105

3.10. Special Design Considerations... 108

Chapter 4 Electical Specification
4.1. Overview .. 113

4.1.1. Transition Road Map ... 113

4.1.2. Dynamic vs. Static Drive Specification... 115

4.2. Component Specification ... 115
4.2.1. 5V Signaling Environment .. 117

4.2.1.1. DC Specifications ... 117
4.2.1.2. AC Specifications ... 118
4.2.1.3. Maximum AC Ratings and Device Protection ... 120

4.2.2. 3.3V Signaling Environment ... 122
4.2.2.1. DC Specifications ... 122
4.2.2.2. AC Specifications ... 123
4.2.2.3. Maximum AC Ratings and Device Protection ... 125

4.2.3. Timing Specification ... 126
4.2.3.1. Clock Specification... 126
4.2.3.2. Timing Parameters.. 128
4.2.3.3. Measurement and Test Conditions ... 129

4.2.4. Indeterminate Inputs and Metastability ... 130

4.2.5. Vendor Provided Specification.. 131

4.2.6. Pinout Recommendation.. 131

4.3. System Board Specification ... 132
4.3.1. Clock Skew.. 132

4.3.2. Reset .. 133

4.3.3. Pull-ups.. 136

4.3.4. Power ... 137
4.3.4.1. Power Requirements... 137
4.3.4.2. Sequencing.. 137
4.3.4.3. Decoupling.. 138

4.3.5. System Timing Budget .. 138

Revision 2.3

XK

4.3.6. Physical Requirements... 142
4.3.6.1. Routing and Layout Recommendations for Four-Layer System Boards.............. 142
4.3.6.2. System Board Impedance ... 142

4.3.7. Connector Pin Assignments... 143

4.4. Add-in Card Specification.. 147
4.4.1. Add-in Card Pin Assignment... 147

4.4.2. Power Requirements .. 151
4.4.2.1. Decoupling.. 151
4.4.2.2. Power Consumption.. 151

4.4.3. Physical Requirements... 152
4.4.3.1. Trace Length Limits ... 152
4.4.3.2. Routing Recommendations for Four-Layer Add-in Cards 153
4.4.3.3. Impedance... 153
4.4.3.4. Signal Loading.. 153

Chapter 5 Mechanical Specification
5.1. Overview .. 155

5.2. Add-in Card Physical Dimensions and Tolerances.. 156

5.3. Connector Physical Description ... 169

5.4. Connector Physical Requirements ... 182

5.5. Connector Performance Specification.. 183

5.6. System Board Implementation ... 184

Chapter 6 Configuration Space
6.1. Configuration Space Organization ... 194

6.2. Configuration Space Functions .. 196
6.2.1. Device Identification ... 196

6.2.2. Device Control... 197

6.2.3. Device Status ... 200

6.2.4. Miscellaneous Registers .. 202

6.2.5. Base Addresses .. 205
6.2.5.1. Address Maps ... 205
6.2.5.2. Expansion ROM Base Address Register .. 208

6.3. PCI Expansion ROMs .. 209
6.3.1. PCI Expansion ROM Contents .. 210

6.3.1.1. PCI Expansion ROM Header Format ... 211
6.3.1.2. PCI Data Structure Format ... 212

6.3.2. Power-on Self Test (POST) Code.. 213

6.3.3. PC-compatible Expansion ROMs.. 214
6.3.3.1. ROM Header Extensions .. 214

6.4. Vital Product Data... 216

Revision 2.3

XKK

6.5. Device Drivers.. 217

6.6. System Reset .. 217

6.7. Capabilities List.. 218

6.8. Message Signaled Interrupts .. 218
6.8.1. Message Capability Structure ... 219

6.8.1.1. Capability ID .. 220
6.8.1.2. Next Pointer.. 220
6.8.1.3. Message Control ... 220
6.8.1.4. Message Address .. 222
6.8.1.5. Message Upper Address (Optional).. 222
6.8.1.6. Message Data.. 223

6.8.2. MSI Operation .. 223
6.8.2.1. MSI Transaction Termination... 225
6.8.2.2. MSI Transaction Reception and Ordering Requirements..................................... 225

Chapter 7 66 MHz PCI Specification
7.1. Introduction .. 227

7.2. Scope .. 227

7.3. Device Implementation Considerations ... 228
7.3.1. Configuration Space .. 228

7.4. Agent Architecture ... 228

7.5. Protocol .. 228
7.5.1. 66MHZ_ENABLE (M66EN) Pin Definition .. 228

7.5.2. Latency .. 229

7.6. Electrical Specification .. 229
7.6.1. Overview ... 229

7.6.2. Transition Roadmap to 66 MHz PCI ... 230

7.6.3. Signaling Environment .. 230
7.6.3.1. DC Specifications ... 231
7.6.3.2. AC Specifications ... 231
7.6.3.3. Maximum AC Ratings and Device Protection ... 232

7.6.4. Timing Specification ... 232
7.6.4.1. Clock Specification... 232
7.6.4.2. Timing Parameters.. 234
7.6.4.3. Measurement and Test Conditions ... 235

7.6.5. Vendor Provided Specification.. 237

7.6.6. Recommendations.. 237
7.6.6.1. Pinout Recommendations ... 237
7.6.6.2. Clocking Recommendations... 237

7.7. System Board Specification ... 238
7.7.1. Clock Uncertainty.. 238

7.7.2. Reset .. 239

7.7.3. Pullups ... 239

Revision 2.3

XKKK

7.7.4. Power ... 239
7.7.4.1. Power Requirements... 239
7.7.4.2. Sequencing.. 239
7.7.4.3. Decoupling.. 239

7.7.5. System Timing Budget .. 239

7.7.6. Physical Requirements... 240
7.7.6.1. Routing and Layout Recommendations for Four-Layer System Boards.............. 240
7.7.6.2. System Board Impedance ... 240

7.7.7. Connector Pin Assignments... 240

7.8. Add-in Card Specifications .. 241

Chapter 8 System Support for SMBus
8.1. SMBus System Requirements.. 243

8.1.1. Power ... 243

8.1.2. Physical and Logical SMBus... 244

8.1.3. Bus Connectivity ... 244

8.1.4 Master and Slave Support ... 245

8.1.5 Addressing and Configuration .. 245

8.1.6 Electrical ... 246

8.1.7 SMBus Behavior on PCI Reset... 246

8.2 Add-in Card SMBus Requirements... 246
8.2.1 Connection.. 246

8.2.2 Master and Slave Support ... 247

8.2.3 Addressing and Configuration .. 247

8.2.4 Power .. 247

8.2.5 Electrical ... 247

�������������	��
�����
��

�������������	�������
��

��

��������� ��������!��� ���"

���������#���	����$�%�����
��!��""

���������&���#�
����'���

����� ���(�

���������)���*+��	��
���������� �
!�����,!��-���
�� �'�
�� �������������"

���������.������/������* � ���

���������*���0�����1�!��
�� ��23�

)�!����� ��23�

Revision 2.3

KZ

Figures
Figure 1-1: PCI Local Bus Applications .. 2

Figure 1-2: PCI System Block Diagram... 3

Figure 2-1: PCI Pin List.. 7

Figure 3-1: Address Phase Formats of Configuration Transactions... 31

Figure 3-2: Layout of CONFIG_ADDRESS Register ... 32

Figure 3-3: Host Bridge Translation for Type 0 Configuration Transactions
 Address Phase... 33

Figure 3-4: Configuration Read.. 38

Figure 3-5: Basic Read Operation .. 47

Figure 3-6: Basic Write Operation ... 48

Figure 3-7: Master Initiated Termination ... 50

Figure 3-8: Master-Abort Termination... 51

Figure 3-9: Retry .. 55

Figure 3-10: Disconnect With Data .. 56

Figure 3-11: Master Completion Termination.. 57

Figure 3-12: Disconnect-1 Without Data Termination... 58

Figure 3-13: Disconnect-2 Without Data Termination... 58

Figure 3-14: Target-Abort .. 59

Figure 3-15: Basic Arbitration.. 70

Figure 3-16: Arbitration for Back-to-Back Access... 74

Figure 3-17: DEVSEL# Assertion.. 89

Figure 3-18: IDSEL Stepping... 92

Figure 3-19: Interrupt Acknowledge Cycle .. 93

Figure 3-20: Parity Operation... 94

Figure 3-21: 64-bit Read Request With 64-bit Transfer... 103

Figure 3-22: 64-bit Write Request With 32-bit Transfer .. 104

Figure 3-23. 64-Bit Dual Address Read Cycle ... 107

Figure 4-1: Add-in Card Connectors .. 114

Figure 4-2: V/I Curves for 5V Signaling.. 119

Figure 4-3: Maximum AC Waveforms for 5V Signaling... 121

Figure 4-4: V/I Curves for 3.3V Signaling... 124

Figure 4-5: Maximum AC Waveforms for 3.3V Signaling.. 125

Figure 4-6: Clock Waveforms .. 126

Figure 4-7: Output Timing Measurement Conditions .. 129

Figure 4-8: Input Timing Measurement Conditions ... 129

Figure 4-9: Suggested Pinout for PQFP PCI Component... 132

Figure 4-10: Clock Skew Diagram... 133

Figure 4-11: Reset Timing.. 135

Figure 4-12: Measurement of Tprop, 3.3 Volt Signaling ... 140

Figure 4-13: Measurement of Tprop, 5 Volt Signaling .. 141

Figure 5-1: PCI Raw Add-in Card (3.3V and Universal) ... 157

Revision 2.3

Z

Figure 5-2: PCI Raw Variable Height Short Add-in Card (3.3V, 32-bit)............................... 158

Figure 5-3: PCI Raw Variable Height Short Add-in Card (3.3V, 64-bit)............................... 159

Figure 5-4: PCI Raw Low Profile Add-in Card (3.3V, 32-bit)... 160

Figure 5-5: PCI Add-in Card Edge Connector Bevel ... 161

Figure 5-6: PCI Add-in Card Assembly (3.3V).. 162

Figure 5-7: Low Profile PCI Add-in Card Assembly (3.3V).. 163

Figure 5-8: PCI Standard Bracket... 164

Figure 5-9: PCI Low Profile Bracket.. 165

Figure 5-10: PCI Standard Retainer.. 166

Figure 5-11: I/O Window Height ... 167

Figure 5-12: Add-in Card Installation with Large I/O Connector .. 168

Figure 5-13: 32-bit Connector .. 170

Figure 5-14: 5V/32-bit Connector Layout Recommendation... 171

Figure 5-15: 3.3V/32-bit Connector Layout Recommendation.. 172

Figure 5-16: 5V/64-bit Connector .. 173

Figure 5-17: 5V/64-bit Connector Layout Recommendation... 174

Figure 5-18: 3.3V/64-bit Connector ... 175

Figure 5-19: 3.3V/64-bit Connector Layout Recommendation.. 176

Figure 5-20: 3.3V/32-bit Add-in Card Edge Connector Dimensions and Tolerances............ 177

Figure 5-21: 3.3V/64-bit Add-in Card Edge Connector Dimensions and Tolerances............ 178

Figure 5-22: Universal 32-bit Add-in Card Edge Connector Dimensions and Tolerances 179

Figure 5-23: Universal 64-bit Add-in Card Edge Connector Dimensions and Tolerances 180

Figure 5-24: PCI Add-in Card Edge Connector Contacts .. 181

Figure 5-25: Connector Contact Detail... 182

Figure 5-26: PCI Connector Location on System Board .. 185

Figure 5-27: 32-bit PCI Riser Connector.. 186

Figure 5-28: 32-bit/5V PCI Riser Connector Footprint.. 187

Figure 5-29: 32-bit/3.3V PCI Riser Connector Footprint... 188

Figure 5-30: 64-bit/5V PCI Riser Connector.. 189

Figure 5-31: 64-bit/5V PCI Riser Connector Footprint.. 190

Figure 5-32: 64-bit/3.3V PCI Riser Connector... 191

Figure 5-33: 64-bit/3.3V PCI Riser Connector Footprint... 192

Figure 6-1: Type 00h Configuration Space Header.. 195

Figure 6-2: Command Register Layout .. 197

Figure 6-3: Status Register Layout ... 200

Figure 6-4: BIST Register Layout .. 203

Figure 6-5: Base Address Register for Memory... 206

Figure 6-6: Base Address Register for I/O ... 206

Figure 6-7: Expansion ROM Base Address Register Layout ... 209

Figure 6-8: PCI Expansion ROM Structure.. 210

Figure 6-9: Typical Image Layout .. 216

Figure 6-10: Example Capabilities List .. 218

Figure 6-11: Message Signaled Interrupt Capability Structure .. 219

Revision 2.3

ZK

Figure 7-1: 33 MHz PCI vs. 66 MHz PCI Timing ... 230

Figure 7-2: 3.3V Clock Waveform... 232

Figure 7-3: Output Timing Measurement Conditions .. 235

Figure 7-4: Input Timing Measurement Conditions ... 235

Figure 7-5: Tval(max) Rising Edge .. 236

Figure 7-6: Tval(max) Falling Edge ... 236

Figure 7-7: Tval (min) and Slew Rate .. 237

Figure 7-8: Recommended Clock Routing ... 238

Figure 7-9: Clock Skew Diagram... 239

Figure 8-1: A Typical Single Physical SMBus... 244

Figure D-1: Programming Interface Byte Layout for IDE Controller Class Code................. 268

Figure E-1: Example Producer - Consumer Model .. 279

Figure E-2: Example System with PCI-to-PCI Bridges ... 286

Figure F-1: Starting an Exclusive Access... 292

Figure F-2: Continuing an Exclusive Access ... 293

Figure F-3: Accessing a Locked Agent .. 294

Figure I-1: VPD Capability Structure... 301

Figure I-2: Small Resource Data Type Tag Bit Definitions ... 302

Figure I-3: Large Resource Data Type Tag Bit Definitions ... 303

Figure I-4: Resource Data Type Flags for a Typical VPD ... 303

Figure I-5: VPD Format.. 304

Revision 2.3

ZKK

Revision 2.3

xiii

Preface

Specification Supersedes Earlier Documents
This document contains the formal specifications of the protocol, electrical, and
mechanical features of the PCI Local Bus Specification, Revision 2.3, as the production
version effective October 31, 2001. The PCI Local Bus Specification, Revision 2.2,
issued December 18, 1998, is superseded by this specification.

Following publication of the PCI Local Bus Specification, Revision 2.3, there may be
future approved errata and/or approved changes to the specification prior to the issuance
of another formal revision. To assure designs meet the latest level requirements,
designers of PCI devices must refer to the PCI SIG home page at http://www.pcisig.com
for any approved changes.

Incorporation of Engineering Change Notices (ECNs)
The following ECNs have been incorporated into this production version of the
specification:

ECN Description

SMBus Adds a two wire management interface to the PCI connector

Reset Timing Adds a new timing requirement from power valid to reset
deassertion

Low Profile Add-in
Card

Adds the Low Profile add-in card form factor

Add-in Card Trace
Impedance

Extends the low end of the add-in card trace impedance

Appendix D Updates Appendix D to include the new Class Codes

Appendix H Updates Appendix H to include new Capability IDs

Add-in Card Keying Deletes 5 volt only keyed add-in card support

Revision 2.3

xiv

ECN Description

Interrupt Disable Adds Interrupt Disable to the Command Register and Interrupt
Status to the Status Register

Add-in Card Replaces all other names used for add-in card with add-in card

System Board Replaces all other names used for system board with system
board

PCI 2.2 Errata List Incorporates the PCI 2.2 errata in the file PCI2.2_errata102499

Document Conventions
The following name and usage conventions are used in this document:

asserted, deasserted The terms asserted and deasserted refer to the
globally visible state of the signal on the clock edge,
not to signal transitions.

edge, clock edge The terms edge and clock edge refer to the rising edge
of the clock. On the rising edge of the clock is the
only time signals have any significance on the PCI
bus.

A # symbol at the end of a signal name indicates that
the signal's asserted state occurs when it is at a low
voltage. The absence of a # symbol indicates that the
signal is asserted at a high voltage.

reserved The contents or undefined states or information are
not defined at this time. Using any reserved area in
the PCI specification is not permitted. All areas of
the PCI specification can only be changed according
to the by-laws of the PCI Special Interest Group. Any
use of the reserved areas of the PCI specification will
result in a product that is not PCI-compliant. The
functionality of any such product cannot be
guaranteed in this or any future revision of the PCI
specification.

signal names Signal names are indicated with this bold font.

signal range A signal name followed by a range enclosed in
brackets, for example AD[31::00], represents a range
of logically related signals. The first number in the
range indicates the most significant bit (msb) and the
last number indicates the least significant bit (lsb).

implementation notes Implementation notes are enclosed in a box. They are
not part of the PCI specification and are included for
clarification and illustration only.

Revision 2.3

1

Chapter 1
Introduction

1.1. Specification Contents
The PCI Local Bus is a high performance 32-bit or 64-bit bus with multiplexed address
and data lines. The bus is intended for use as an interconnect mechanism between highly
integrated peripheral controller components, peripheral add-in cards, and
processor/memory systems.

The PCI Local Bus Specification, Rev. 2.3, includes the protocol, electrical, mechanical,
and configuration specification for PCI Local Bus components and add-in cards. The
electrical definition provides for 3.3V and 5V signaling environments.

The PCI Local Bus Specification defines the PCI hardware environment. Contact the
PCI SIG for information on the other PCI Specifications. For information on how to join
the PCI SIG or to obtain these documents, refer to Section 1.6.

1.2. Motivation
When the PCI Local Bus Specification was originally developed in 1992, graphics-
oriented operating systems such as Windows and OS/2 had created a data bottleneck
between the processor and its display peripherals in standard PC I/O architectures.
Moving peripheral functions with high bandwidth requirements closer to the system's
processor bus can eliminate this bottleneck. Substantial performance gains are seen with
graphical user interfaces (GUIs) and other high bandwidth functions (i.e., full motion
video, SCSI, LANs, etc.) when a "local bus" design is used.

PCI successfully met these demands of the industry and is now the most widely accepted
and implemented expansion standard in the world.

Revision 2.3

2

1.3. PCI Local Bus Applications
The PCI Local Bus has been defined with the primary goal of establishing an industry
standard, high performance local bus architecture that offers low cost and allows
differentiation. While the primary focus is on enabling new price-performance points in
today's systems, it is important that a new standard also accommodates future system
requirements and be applicable across multiple platforms and architectures. Figure 1-1
shows the multiple dimensions of the PCI Local Bus.

3.3VServers

High End
Desktops

Low, Mid-
Range

Desktop
X86

Architecture
Processor
Families

Alpha AXPTM

Processor
Families

Future
CPUs

5V
64-bit Upgrade

Path
Auto

Configuration

Mobile

Figure 1-1: PCI Local Bus Applications

While the initial focus of local bus applications has been on low to high end desktop
systems, the PCI Local Bus also comprehends the requirements from mobile applications
up through servers. The PCI Local Bus specifies both the 3.3 volt and 5 volt signaling
requirements and this revision no longer supports 5 volt only keyed add-in cards, which
represents a significant step in the migration path to the 3.3 volt signaling environment.

The PCI component and add-in card interface is processor independent, enabling an
efficient transition to future processor generations and use with multiple processor
architectures. Processor independence allows the PCI Local Bus to be optimized for I/O
functions, enables concurrent operation of the local bus with the processor/memory
subsystem, and accommodates multiple high performance peripherals in addition to
graphics (motion video, LAN, SCSI, FDDI, hard disk drives, etc.). Movement to
enhanced video and multimedia displays (i.e., HDTV and 3D graphics) and other high
bandwidth I/O will continue to increase local bus bandwidth requirements. A
transparent 64-bit extension of the 32-bit data and address buses is defined, doubling the
bus bandwidth and offering forward and backward compatibility of 32-bit and 64-bit PCI
Local Bus peripherals. A forward and backward compatible PCI-X specification (see the
PCI-X Addendum to the PCI Local Bus Specification) is also defined, increasing the
bandwidth capabilities of the 33 MHz definition by a factor of four.

The PCI Local Bus standard offers additional benefits to the users of PCI based systems.
Configuration registers are specified for PCI components and add-in cards. A system
with embedded auto configuration software offers true ease-of-use for the system user by
automatically configuring PCI add-in cards at power on.

Revision 2.3

3

1.4. PCI Local Bus Overview
The block diagram (Figure 1-2) shows a typical PCI Local Bus system architecture. This
example is not intended to imply any specific architectural limits. In this example, the
processor/cache/memory subsystem is connected to PCI through a PCI bridge. This
bridge provides a low latency path through which the processor may directly access PCI
devices mapped anywhere in the memory or I/O address spaces. It also provides a high
bandwidth path allowing PCI masters direct access to main memory. The bridge may
include optional functions such as arbitration and hot plugging. The amount of data
buffering a bridge includes is implementation specific.

Exp Bus
Xface

Base I/O
Functions

LAN SCSI

Processor

Bridge/
Memory

Controller

Audio
DRAM

Motion
Video

Graphics

PCI Local Bus

ISA/EISA - MicroChannel

Cache

Figure 1-2: PCI System Block Diagram

Typical PCI Local Bus implementations will support up to four add-in card connectors,
although expansion capability is not required. PCI add-in cards use an edge connector
and system boards that allow a female connector to be mounted parallel to the system
bus connectors.

Four sizes of PCI add-in cards are defined: long, short, Low Profile, and variable short
length. Systems are not required to support all add-in card types. The long add-in cards
include an extender to support the end of the add-in card. To accommodate the 3.3V and
5V signaling environments and to facilitate a smooth migration path between the
voltages, two add-in card electrical types are specified: a "universal" add-in card which
plugs into both 3.3V and 5V connectors and a "3.3 volt" add-in card which plugs into
only the 3.3V connector.

Revision 2.3

4

1.5. PCI Local Bus Features and Benefits
The PCI Local Bus was specified to establish a high performance local bus standard for
several generations of products. The PCI specification provides a selection of features
that can achieve multiple price-performance points and can enable functions that allow
differentiation at the system and component level. Features are categorized by benefit as
follows:

High Performance • Transparent upgrade from 32-bit data path at 33 MHz
(132 MB/s peak) to 64-bit data path at 33 MHz
(264 MB/s peak), from 32-bit data path at 66 MHz
(264 MB/s peak) to 64-bit data path at 66 MHz
(532 MB/s peak), and from 32-bit data path at 133 MHz
(532 MB/s peak) to 64-bit data path at 133 MHz (1064
MB/s peak).

• Variable length linear and cacheline wrap mode bursting
for both read and writes improves write dependent
graphics performance.

• Low latency random accesses (60-ns write access latency
for 33 MHz PCI to 30-ns for 133 MHz PCI-X to slave
registers from master parked on bus).

• Capable of full concurrency with processor/memory
subsystem.

• Synchronous bus with operation up to 33 MHz, 66 MHz,
or 133 MHz.

• Hidden (overlapped) central arbitration.

Low Cost • Optimized for direct silicon (component) interconnection;
i.e., no glue logic. Electrical/driver (i.e., total load) and
frequency specifications are met with standard ASIC
technologies and other typical processes.

• Multiplexed architecture reduces pin count (47 signals for
target; 49 for master) and package size of PCI components
or provides for additional functions to be built into a
particular package size.

Ease of Use • Enables full auto configuration support of PCI Local Bus
add-in cards and components. PCI devices contain
registers with the device information required for
configuration.

Longevity • Processor independent. Supports multiple families of
processors as well as future generations of processors (by
bridges or by direct integration).

• Support for 64-bit addressing.

• Both 5-volt and 3.3-volt signaling environments are
specified. Voltage migration path enables smooth industry
transition from 5 volts to 3.3 volts.

Revision 2.3

5

Interoperability/
Reliability

• Small form factor add-in cards.

• Present signals allow power supplies to be optimized for
the expected system usage by monitoring add-in cards that
could surpass the maximum power budgeted by the
system.

• Over 2000 hours of electrical SPICE simulation with
hardware model validation.

• Forward and backward compatibility of 32-bit and 64-bit
add-in cards and components.

• Forward and backward compatibility with PCI 33 MHz,
PCI 66 MHz, PCI-X 66 MHz, and PCI-X 133 MHz add-in
cards and components.

• Increased reliability and interoperability of add-in cards by
comprehending the loading and frequency requirements of
the local bus at the component level, eliminating buffers
and glue logic.

Flexibility • Full multi-master capability allowing any PCI master peer-
to-peer access to any PCI master/target.

Data Integrity • Provides parity on both data and address and allows
implementation of robust client platforms.

Software
Compatibility

• PCI components can be fully compatible with existing
driver and applications software. Device drivers can be
portable across various classes of platforms.

Revision 2.3

6

1.6. Administration
This document is maintained by the PCI SIG. The PCI SIG, an incorporated non-profit
organization of members of the microcomputer industry, was established to monitor and
enhance the development of the PCI Local Bus in three ways. The PCI SIG is chartered
to:

• Maintain the forward compatibility of all PCI Local Bus revisions or addenda.

• Maintain the PCI Local Bus specification as a simple, easy to implement, stable
technology in the spirit of its design.

• Contribute to the establishment of the PCI Local Bus as an industry wide standard
and to the technical longevity of the PCI Local Bus architecture.

SIG membership is available to all applicants within the microcomputer industry.
Benefits of membership include:

• Ability to submit specification revisions and addendum proposals

• Participation in specification revisions and addendum proposals

• Automatically receive revisions and addenda

• Voting rights to determine the Board of Directors membership

• Vendor ID number assignment

• PCI technical support

• PCI support documentation and materials

• Participation in SIG sponsored trade show suites and events, conferences, and other
PCI Local Bus promotional activities

• Participation in the compliance program including participation at the “PCI
Compliance Workshops” and the opportunity to be included in the “PCI Integrator’s
List”

An annual PCI Special Interest Group membership costs US$3,000. This membership
fee supports the activities of the PCI SIG including the compliance program, PCI SIG
administration, and vendor ID issuing and administration.

For information on how to become a SIG member or on obtaining PCI Local Bus
documentation, please contact:

PCI Special Interest Group
5440 SW Westgate Drive
Suite 217
Portland, Oregon 97221
Phone: 800-433-5177 (Inside the U.S.)

503-291-2569 (Outside the U.S.)
Fax: 503-297-1090
e-mail administration@pcisig.com
http://www.pcisig.com

Revision 2.3

7

Chapter 2
Signal Definition

The PCI interface requires a minimum1 of 47 pins for a target-only device and 49 pins
for a master to handle data and addressing, interface control, arbitration, and system
functions. Figure 2-1 shows the pins in functional groups, with required pins on the left
side and optional pins on the right side. The direction indication on signals in Figure 2-1
assumes a combination master/target device.

���������
	
���
�

�����

�������
�������

���������
�
���������
���

���
��������	

�����

����������

	
��������

�����
����
���� LOCK#

���
���

�����
������

	��
���

��� �����

����

���
���

�	�
���
����

����
���������� ��

�����
ACK64#

����������

	
��� ����

���
�
!�"
����#

$�%&��
�'�����
�

����

Required Pins Optional Pins

����

���������
	
���
�

������("������
���	
����

����

Figure 2-1: PCI Pin List

1 The minimum number of pins for a system board-only device is 45 for a target-only and 47 for a master
(PERR# and SERR# are optional for system board-only applications). Systems must support all signals
defined for the connector. This includes individual REQ# and GNT# signals for each connector. The
PRSNT[1::2]# pins are not device signals and, therefore, are not included in Figure 2-1, but are required
to be connected on add-in cards.

Revision 2.3

8

2.1. Signal Type Definition
The following signal type definitions are from the view point of all devices other than
the arbiter or central resource. For the arbiter, REQ# is an input, GNT# is an output,
and other PCI signals for the arbiter have the same direction as a master or target. The
central resource is a “logical” device where all system type functions are located (refer
to Section 2.4. for more details).

in Input is a standard input-only signal.

out Totem Pole Output is a standard active driver.

t/s Tri-State is a bi-directional, tri-state input/output pin.

s/t/s Sustained Tri-State is an active low tri-state signal owned and driven
by one and only one agent at a time. The agent that drives an s/t/s pin
low must drive it high for at least one clock before letting it float. A
new agent cannot start driving a s/t/s signal any sooner than one clock
after the previous owner tri-states it. A pullup is required to sustain
the inactive state until another agent drives it and must be provided by
the central resource.

o/d Open Drain allows multiple devices to share as a wire-OR. A pull-up
is required to sustain the inactive state until another agent drives it and
must be provided by the central resource.

2.2. Pin Functional Groups
The PCI pin definitions are organized in the functional groups shown in Figure 2-1. A #
symbol at the end of a signal name indicates that the asserted state occurs when the
signal is at a low voltage. When the # symbol is absent, the signal is asserted at a high
voltage. The signaling method used on each pin is shown following the signal name.

2.2.1. System Pins

CLK in Clock provides timing for all transactions on PCI and is an
input to every PCI device. All other PCI signals, except
RST#, INTA#, INTB#, INTC#, and INTD#, are sampled on
the rising edge of CLK and all other timing parameters are
defined with respect to this edge. PCI operates up to 33 MHz
with a minimum frequency of 0 Hz (refer to Chapter 4),
66 MHz with a minimum frequency of 33 MHz (refer to
Chapter 7), or 133 MHz with a minimum of 50 MHz (refer to
the PCI-X Addendum to the PCI Local Bus Specification).

Revision 2.3

9

RST# in Reset is used to bring PCI-specific registers, sequencers, and
signals to a consistent state. What effect RST# has on a
device beyond the PCI sequencer is beyond the scope of this
specification, except for reset states of required PCI
configuration registers. A device that can wake the system
while in a powered down bus state has additional
requirements related to RST#. Refer to the PCI Power
Management Interface Specification for details. Anytime
RST# is asserted, all PCI output signals must be driven to
their benign state. In general, this means they must be
asynchronously tri-stated. REQ# and GNT# must both be tri-
stated (they cannot be driven low or high during reset). To
prevent AD, C/BE#, and PAR signals from floating during
reset, the central resource may drive these lines during reset
(bus parking) but only to a logic low level; they may not be
driven high. Refer to Section 3.8.1. for special requirements
for AD[63::32], C/BE[7::4]#, and PAR64 when they are
not connected (as in a 64-bit add-in card installed in a 32-bit
connector).

RST# may be asynchronous to CLK when asserted or
deasserted. Although asynchronous, deassertion is guaranteed
to be a clean, bounce-free edge. Except for configuration
accesses, only devices that are required to boot the system
will respond after reset.

2.2.2. Address and Data Pins

AD[31::00] t/s Address and Data are multiplexed on the same PCI pins. A
bus transaction consists of an address2 phase followed by one
or more data phases. PCI supports both read and write bursts.

The address phase is the first clock cycle in which FRAME#
is asserted. During the address phase, AD[31::00] contain a
physical address (32 bits). For I/O, this is a byte address; for
configuration and memory, it is a DWORD address. During
data phases, AD[07::00] contain the least significant byte
(lsb) and AD[31::24] contain the most significant byte (msb).
Write data is stable and valid when IRDY# is asserted; read
data is stable and valid when TRDY# is asserted. Data is
transferred during those clocks where both IRDY# and
TRDY# are asserted.

2 The DAC uses two address phases to transfer a 64-bit address.

Revision 2.3

10

C/BE[3::0]# t/s Bus Command and Byte Enables are multiplexed on the same
PCI pins. During the address phase of a transaction,
C/BE[3::0]# define the bus command (refer to Section 3.1.
for bus command definitions). During the data phase,
C/BE[3::0]# are used as Byte Enables. The Byte Enables are
valid for the entire data phase and determine which byte lanes
carry meaningful data. C/BE[0]# applies to byte 0 (lsb) and
C/BE[3]# applies to byte 3 (msb).

PAR t/s Parity is even3 parity across AD[31::00] and C/BE[3::0]#.
Parity generation is required by all PCI agents. PAR is stable
and valid one clock after each address phase. For data phases,
PAR is stable and valid one clock after either IRDY# is
asserted on a write transaction or TRDY# is asserted on a read
transaction. Once PAR is valid, it remains valid until one
clock after the completion of the current data phase. (PAR
has the same timing as AD[31::00], but it is delayed by one
clock.) The master drives PAR for address and write data
phases; the target drives PAR for read data phases.

2.2.3. Interface Control Pins

FRAME# s/t/s Cycle Frame is driven by the current master to indicate the
beginning and duration of an access. FRAME# is asserted to
indicate a bus transaction is beginning. While FRAME# is
asserted, data transfers continue. When FRAME# is
deasserted, the transaction is in the final data phase or has
completed.

IRDY# s/t/s Initiator Ready indicates the initiating agent's (bus master's)
ability to complete the current data phase of the transaction.
IRDY# is used in conjunction with TRDY#. A data phase is
completed on any clock both IRDY# and TRDY# are
asserted. During a write, IRDY# indicates that valid data is
present on AD[31::00]. During a read, it indicates the master
is prepared to accept data. Wait cycles are inserted until both
IRDY# and TRDY# are asserted together.

TRDY# s/t/s Target Ready indicates the target agent's (selected device's)
ability to complete the current data phase of the transaction.
TRDY# is used in conjunction with IRDY#. A data phase is
completed on any clock both TRDY# and IRDY# are
asserted. During a read, TRDY# indicates that valid data is
present on AD[31::00]. During a write, it indicates the target
is prepared to accept data. Wait cycles are inserted until both
IRDY# and TRDY# are asserted together.

STOP# s/t/s Stop indicates the current target is requesting the master to
stop the current transaction.

3 The number of "1"s on AD[31::00], C/BE[3::0]#, and PAR equals an even number.

Revision 2.3

11

LOCK# s/t/s Lock indicates an atomic operation to a bridge that may
require multiple transactions to complete. When LOCK# is
asserted, non-exclusive transactions may proceed to a bridge
that is not currently locked. A grant to start a transaction on
PCI does not guarantee control of LOCK#. Control of
LOCK# is obtained under its own protocol in conjunction
with GNT#. It is possible for different agents to use PCI
while a single master retains ownership of LOCK#. Locked
transactions may be initiated only by host bridges, PCI-to-PCI
bridges, and expansion bus bridges. Refer to Appendix F for
details on the requirements of LOCK#.

IDSEL in Initialization Device Select is used as a chip select during
configuration read and write transactions.

DEVSEL# s/t/s Device Select, when actively driven, indicates the driving
device has decoded its address as the target of the current
access. As an input, DEVSEL# indicates whether any device
on the bus has been selected.

2.2.4. Arbitration Pins (Bus Masters Only)

REQ# t/s Request indicates to the arbiter that this agent desires use of
the bus. This is a point-to-point signal. Every master has its
own REQ# which must be tri-stated while RST# is asserted.

GNT# t/s Grant indicates to the agent that access to the bus has been
granted. This is a point-to-point signal. Every master has its
own GNT# which must be ignored while RST# is asserted.

While RST# is asserted, the arbiter must ignore all REQ#4 lines since they are tri-stated
and do not contain a valid request. The arbiter can only perform arbitration after RST#
is deasserted. A master must ignore its GNT# while RST# is asserted. REQ# and
GNT# are tri-state signals due to power sequencing requirements in the case where the
bus arbiter is powered by a different supply voltage than the bus master device.

4 REQ# is an input to the arbiter, and GNT# is an output.

Revision 2.3

12

2.2.5. Error Reporting Pins

The error reporting pins are required5 by all devices and may be asserted when enabled:

PERR# s/t/s Parity Error is only for the reporting of data parity errors
during all PCI transactions except a Special Cycle. The
PERR# pin is sustained tri-state and must be driven active
by the agent receiving data (when enabled) two clocks
following the data when a data parity error is detected. The
minimum duration of PERR# is one clock for each data
phase that a data parity error is detected. (If sequential data
phases each have a data parity error, the PERR# signal will
be asserted for more than a single clock.) PERR# must be
driven high for one clock before being tri-stated as with all
sustained tri-state signals. Refer to Section 3.7.4.1. for more
details.

SERR# o/d System Error is for reporting address parity errors, data parity
errors on the Special Cycle command, or any other system
error where the result will be catastrophic. If an agent does
not want a non-maskable interrupt (NMI) to be generated, a
different reporting mechanism is required. SERR# is pure
open drain and is actively driven for a single PCI clock by the
agent reporting the error. The assertion of SERR# is
synchronous to the clock and meets the setup and hold times
of all bused signals. However, the restoring of SERR# to the
deasserted state is accomplished by a weak pullup (same
value as used for s/t/s) which is provided by the central
resource not by the signaling agent. This pullup may take two
to three clock periods to fully restore SERR#. The agent that
reports SERR# to the operating system does so anytime
SERR# is asserted.

5 Some system board devices are granted exceptions (refer to Section 3.7.2. for details).

Revision 2.3

13

2.2.6. Interrupt Pins (Optional)

Interrupts on PCI are optional and defined as "level sensitive," asserted low (negative
true), using open drain output drivers. The assertion and deassertion of INTx# is
asynchronous to CLK. A device asserts its INTx# line when requesting attention from
its device driver unless the device is enabled to use message signaled interrupts (MSI)
(refer to Section 6.8. for more information). Once the INTx# signal is asserted, it
remains asserted until the device driver clears the pending request. When the request is
cleared, the device deasserts its INTx# signal. PCI defines one interrupt line for a single
function device and up to four interrupt lines for a multi-function6 device or connector.
For a single function device, only INTA# may be used while the other three interrupt
lines have no meaning.

INTA# o/d Interrupt A is used to request an interrupt.

INTB# o/d Interrupt B is used to request an interrupt and only has
meaning on a multi-function device.

INTC# o/d Interrupt C is used to request an interrupt and only has
meaning on a multi-function device.

INTD# o/d Interrupt D is used to request an interrupt and only has
meaning on a multi-function device.

Any function on a multi-function device can be connected to any of the INTx# lines.
The Interrupt Pin register (refer to Section 6.2.4. for details) defines which INTx# line
the function uses to request an interrupt. If a device implements a single INTx# line, it
is called INTA#; if it implements two lines, they are called INTA# and INTB#; and so
forth. For a multi-function device, all functions may use the same INTx# line or each
may have its own (up to a maximum of four functions) or any combination thereof. A
single function can never generate an interrupt request on more than one INTx# line.

The system vendor is free to combine the various INTx# signals from the PCI
connector(s) in any way to connect them to the interrupt controller. They may be wire-
ORed or electronically switched under program control, or any combination thereof.
The system designer must insure that each INTx# signal from each connector is
connected to an input on the interrupt controller. This means the device driver may not
make any assumptions about interrupt sharing. All PCI device drivers must be able to
share an interrupt (chaining) with any other logical device including devices in the same
multi-function package.

6 When several independent functions are integrated into a single device, it will be referred to as a multi-
function device. Each function on a multi-function device has its own configuration space.

Revision 2.3

14

Implementation Note: Interrupt Routing

How interrupts are routed on the system board is system specific. However, the
following example may be used when another option is not required and the interrupt
controller has four open interrupt request lines available. Since most devices are single
function and, therefore, can only use INTA# on the device, this mechanism distributes
the interrupts evenly among the interrupt controller's input pins.

INTA# of Device Number 0 is connected to IRQW on the system board. (Device
Number has no significance regarding being located on the system board or in a
connector.) INTA# of Device Number 1 is connected to IRQX on the system board.
INTA# of Device Number 2 is connected to IRQY on the system board. INTA# of
Device Number 3 is connected to IRQZ on the system board. The table below describes
how each agent’s INTx# lines are connected to the system board interrupt lines. The
following equation can be used to determine to which INTx# signal on the system board
a given device’s INTx# line(s) is connected.

MB = (D + I) MOD 4

MB = System board Interrupt (IRQW = 0, IRQX = 1, IRQY = 2, and IRQZ = 3)

D = Device Number

I = Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and INTD# = 3)

Device Number Interrupt Pin on Interrupt Pin on
on System Board Device System Board

0, 4, 8, 12, INTA# IRQW
16, 20, 24, 28 INTB# IRQX

INTC# IRQY
INTD# IRQZ

1, 5, 9, 13, INTA# IRQX
17, 21, 25, 29 INTB# IRQY

INTC# IRQZ
INTD# IRQW

2, 6, 10, 14, INTA# IRQY
18, 22, 26, 30 INTB# IRQZ

INTC# IRQW
INTD# IRQX

3, 7, 11, 15, INTA# IRQZ
19, 23, 27, 31 INTB# IRQW

INTC# IRQX
INTD# IRQY

Revision 2.3

15

2.2.7. Additional Signals

PRSNT[1::2]# in The Present signals are not signals for a device, but are
provided by an add-in card. The Present signals indicate to
the system board whether an add-in card is physically
present in the slot and, if one is present, the total power
requirements of the add-in card. These signals are required
for add-in cards but are optional for system boards. Refer to
Section 4.4.1. for more details.

Implementation Note: PRSNT# Pins

At a minimum, the add-in card must ground one of the two PRSNT[1::2]# pins to
indicate to the system board that an add-in card is physically in the connector. The
signal level of PRSNT1# and PRSNT2# inform the system board of the power
requirements of the add-in card. The add-in card may simply tie PRSNT1# and/or
PRSNT2# to ground to signal the appropriate power requirements of the add-in card.
(Refer to Section 4.4.1. for details.) The system board provides pull-ups on these signals
to indicate when no add-in card is currently present.

CLKRUN# in, o/d,
s/t/s

Clock running is an optional signal used as an input for a
device to determine the status of CLK and an open drain
output used by the device to request starting or speeding up
CLK.

CLKRUN# is a sustained tri-state signal used by the
central resource to request permission to stop or slow CLK.
The central resource is responsible for maintaining
CLKRUN# in the asserted state when CLK is running and
deasserts CLKRUN# to request permission to stop or slow
CLK. The central resource must provide the pullup for
CLKRUN#.

Implementation Note: CLKRUN#

CLKRUN# is an optional signal used in the PCI mobile environment and not defined for
the connector. Details of the CLKRUN# protocol and other mobile design
considerations are discussed in the PCI Mobile Design Guide.

Revision 2.3

16

M66EN in The 66MHZ_ENABLE pin indicates to a device whether the
bus segment is operating at 66 or 33 MHz. Refer to
Section 7.5.1. for details of this signal's operation.

PME# o/d The Power Management Event signal is an optional signal
that can be used by a device to request a change in the
device or system power state. The assertion and
deassertion of PME# is asynchronous to CLK. This signal
has additional electrical requirements over and above
standard open drain signals that allow it to be shared
between devices which are powered off and those which
are powered on. In general, this signal is bused between all
PCI connectors in a system, although certain
implementations may choose to pass separate buffered
copies of the signal to the system logic.

Devices must be enabled by software before asserting this
signal. Once asserted, the device must continue to drive
the signal low until software explicitly clears the condition
in the device.

The use of this pin is specified in the PCI Bus Power
Management Interface Specification. The system vendor
must provide a pull-up on this signal, if it allows the signal
to be used. System vendors that do not use this signal are
not required to bus it between connectors or provide pull-
ups on those pins.

3.3Vaux in An optional 3.3 volt auxiliary power source delivers power
to the PCI add-in card for generation of power management
events when the main power to the card has been turned off
by software.

The use of this pin is specified in the PCI Bus Power
Management Interface Specification.

A system or add-in card that does not support PCI bus
power management must treat the 3.3Vaux pin as reserved.

Implementation Note: PME# and 3.3Vaux

PME# and 3.3Vaux are optional signals defined by the PCI Bus Power Management
Interface Specification. Details of these signals can be found in that document.

Revision 2.3

17

2.2.8. 64-Bit Bus Extension Pins (Optional)

The 64-bit extension pins are collectively optional. That is, if the 64-bit extension is
used, all the pins in this section are required.

AD[63::32] t/s Address and Data are multiplexed on the same pins and
provide 32 additional bits. During an address phase (when
using the DAC command and when REQ64# is asserted), the
upper 32-bits of a 64-bit address are transferred; otherwise,
these bits are reserved7 but are stable and indeterminate.
During a data phase, an additional 32-bits of data are
transferred when a 64-bit transaction has been negotiated by
the assertion of REQ64# and ACK64#.

C/BE[7::4]# t/s Bus Command and Byte Enables are multiplexed on the same
pins. During an address phase (when using the DAC
command and when REQ64# is asserted), the actual bus
command is transferred on C/BE[7::4]#; otherwise, these bits
are reserved and indeterminate. During a data phase,
C/BE[7::4]# are Byte Enables indicating which byte lanes
carry meaningful data when a 64-bit transaction has been
negotiated by the assertion of REQ64# and ACK64#.
C/BE[4]# applies to byte 4 and C/BE[7]# applies to byte 7.

REQ64# s/t/s Request 64-bit Transfer, when asserted by the current bus
master, indicates it desires to transfer data using 64 bits.
REQ64# also has the same timing as FRAME#. REQ64#
also has meaning at the end of reset as described in Section
3.8.1.

ACK64# s/t/s Acknowledge 64-bit Transfer, when actively driven by the
device that has positively decoded its address as the target of
the current access, indicates the target is willing to transfer
data using 64 bits. ACK64# has the same timing as
DEVSEL#.

PAR64 t/s Parity Upper DWORD is the even8 parity bit that protects
AD[63::32] and C/BE[7::4]#. PAR64 must be valid one
clock after each address phase on any transaction in which
REQ64# is asserted.

PAR64 is stable and valid for 64-bit data phases one clock
after either IRDY# is asserted on a write transaction or
TRDY# is asserted on a read transaction. (PAR64 has the
same timing as AD[63::32] but delayed by one clock.) The
master drives PAR64 for address and write data phases; the
target drives PAR64 for read data phases.

7 Reserved means reserved for future use by the PCI SIG Board of Directors. Reserved bits must not be
used by any device.

8 The number of “1”s on AD[63::32], C/BE[7::4]#, and PAR64 equals an even number.

Revision 2.3

18

2.2.9. JTAG/Boundary Scan Pins (Optional)

The IEEE Standard 1149.1, Test Access Port and Boundary Scan Architecture, is
included as an optional interface for PCI devices. IEEE Standard 1149.1 specifies the
rules and permissions for designing an 1149.1-compliant IC. Inclusion of a Test Access
Port (TAP) on a device allows boundary scan to be used for testing of the device and the
add-in card on which it is installed. The TAP is comprised of four pins (optionally five)
that are used to interface serially with a TAP controller within the PCI device.

TCK in Test Clock is used to clock state information and test data into
and out of the device during operation of the TAP.

TDI in Test Data Input is used to serially shift test data and test
instructions into the device during TAP operation.

TDO out Test Output is used to serially shift test data and test
instructions out of the device during TAP operation.

TMS in Test Mode Select is used to control the state of the TAP
controller in the device.

TRST# in Test Reset provides an asynchronous initialization of the TAP
controller. This signal is optional in IEEE Standard 1149.1.

These TAP pins operate in the same electrical environment (5V or 3.3V) as the I/O
buffers of the device's PCI interface. The drive strength of the TDO pin is not required
to be the same as standard PCI bus pins. TDO drive strength should be specified in the
device's data sheet.

The system vendor is responsible for the design and operation of the 1149.1 serial chains
("rings") required in the system. The signals are supplementary to the PCI bus and are
not operated in a multi-drop fashion. Typically, an 1149.1 ring is created by connecting
one device's TDO pin to another device's TDI pin to create a serial chain of devices. In
this application, the IC's receive the same TCK, TMS, and optional TRST# signals. The
entire 1149.1 ring (or rings) is (are) connected either to a system board test connector for
test purposes or to a resident 1149.1 Controller IC.

The PCI specification supports add-in cards with a connector that includes 1149.1
Boundary Scan signals. Methods of connecting and using the 1149.1 test rings in a
system with add-in cards include:

• Only use the 1149.1 ring on the add-in card during manufacturing test of the add-in
card. In this case, the 1149.1 ring on the system board would not be connected to the
1149.1 signals for the add-in cards. The system board would be tested by itself
during manufacturing.

• For each add-in card connector in a system, create a separate 1149.1 ring on the
system board. For example, with two add-in card connectors there would be three
1149.1 rings on the system board.

• Utilize an IC that allows for hierarchical 1149.1 multi-drop addressability. These
IC's would be able to handle the multiple 1149.1 rings and allow multi-drop
addressability and operation.

Add-in cards that do not support the IEEE Standard 1149.1 interface must hardwire the
add-in card's TDI pin to its TDO pin.

Revision 2.3

19

2.2.10. System Management Bus Interface Pins (Optional)

The SMBus interface pins are collectively optional. If the optional management features
described in Section 8 are implemented, SMBCLK and SMBDAT are both required.

SMBCLK o/d Optional SMBus interface clock signal.
This pin is reserved for the optional support of SMBCLK.

SMBDAT o/d Optional SMBus interface data signal.
This pin is reserved for the optional support of SMBDAT.

2.3. Sideband Signals
PCI provides all basic transfer mechanisms expected of a general purpose, multi-master
I/O bus. However, it does not preclude the opportunity for product specific
function/performance enhancements via sideband signals. A sideband signal is loosely
defined as any signal not part of the PCI specification that connects two or more PCI
compliant agents and has meaning only to these agents. Sideband signals are permitted
for two or more devices to communicate some aspect of their device specific state in
order to improve the overall effectiveness of PCI utilization or system operation.

No pins are allowed in the PCI connector for sideband signals. Therefore, sideband
signals must be limited to the system board environment. Furthermore, sideband signals
may never violate the specified protocol on defined PCI signals or cause the specified
protocol to be violated.

2.4. Central Resource Functions
Throughout this specification, the term central resource is used to describe bus support
functions supplied by the host system, typically in a PCI compliant bridge or standard
chipset. These functions include, but are not limited to, the following:

• Central Arbitration. (REQ# is an input and GNT# is an output.)

• Required signal pullups as described in Section 4.3.3. and "keepers" as described in
Section 3.8.1.

• Subtractive Decode. Only one agent on a PCI bus can use subtractive decode and
would typically be a bridge to a standard expansion bus (refer to Section 3.6.1.).

• Convert processor transaction into a configuration transaction.

• Generation of the individual IDSEL signals to each device for system
configuration.

• Driving REQ64# during reset.

Revision 2.3

20

Revision 2.3

21

Chapter 3
Bus Operation

3.1. Bus Commands
Bus commands indicate to the target the type of transaction the master is requesting.
Bus commands are encoded on the C/BE[3::0]# lines during the address phase.

3.1.1. Command Definition

PCI bus command encodings and types are listed below, followed by a brief description
of each. Note: The command encodings are as viewed on the bus where a "1" indicates
a high voltage and "0" is a low voltage. Byte enables are asserted when "0".

C/BE[3::0]# Command Type

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Interrupt Acknowledge
Special Cycle
I/O Read
I/O Write
Reserved
Reserved
Memory Read
Memory Write
Reserved
Reserved
Configuration Read
Configuration Write
Memory Read Multiple
Dual Address Cycle
Memory Read Line
Memory Write and Invalidate

The Interrupt Acknowledge command is a read implicitly addressed to the system
interrupt controller. The address bits are logical don't cares during the address phase and
the byte enables indicate the size of the vector to be returned.

Revision 2.3

22

The Special Cycle command provides a simple message broadcast mechanism on PCI. It
is designed to be used as an alternative to physical signals when sideband
communication is necessary. This mechanism is fully described in Section 3.6.2.

The I/O Read command is used to read data from an agent mapped in I/O Address
Space. AD[31::00] provide a byte address. All 32 bits must be decoded. The byte
enables indicate the size of the transfer and must be consistent with the byte address.

The I/O Write command is used to write data to an agent mapped in I/O Address Space.
All 32 bits must be decoded. The byte enables indicate the size of the transfer and must
be consistent with the byte address.

Reserved command encodings are reserved for future use. PCI targets must not alias
reserved commands with other commands. Targets must not respond to reserved
encodings. If a reserved encoding is used on the interface, the access typically will be
terminated with Master-Abort.

The Memory Read command is used to read data from an agent mapped in the Memory
Address Space. The target is free to do an anticipatory read for this command only if it
can guarantee that such a read will have no side effects. Furthermore, the target must
ensure the coherency (which includes ordering) of any data retained in temporary buffers
after this PCI transaction is completed. Such buffers must be invalidated before any
synchronization events (e.g., updating an I/O status register or memory flag) are passed
through this access path.

The Memory Write command is used to write data to an agent mapped in the Memory
Address Space. When the target returns "ready," it has assumed responsibility for the
coherency (which includes ordering) of the subject data. This can be done either by
implementing this command in a fully synchronous manner, or by insuring any software
transparent posting buffer will be flushed before synchronization events (e.g., updating
an I/O status register or memory flag) are passed through this access path. This implies
that the master is free to create a synchronization event immediately after using this
command.

The Configuration Read command is used to read the Configuration Space of each agent.
An agent is selected during a configuration access when its IDSEL signal is asserted and
AD[1::0] are 00. During the address phase of a configuration transaction, AD[7::2]
address one of the 64 DWORD registers (where byte enables address the byte(s) within
each DWORD) in Configuration Space of each device and AD[31::11] are logical don't
cares to the selected agent (refer to Section 3.2.2.3.). AD[10::08] indicate which device
of a multi-function agent is being addressed.

The Configuration Write command is used to transfer data to the Configuration Space of
each agent. Addressing for configuration write transactions is the same as for
configuration read transactions.

The Memory Read Multiple command is semantically identical to the Memory Read
command except that it additionally indicates that the master may intend to fetch more
than one cacheline before disconnecting. The memory controller continues pipelining
memory requests as long as FRAME# is asserted. This command is intended to be used
with bulk sequential data transfers where the memory system (and the requesting master)
might gain some performance advantage by sequentially reading ahead one or more
additional cacheline(s) when a software transparent buffer is available for temporary
storage.

The Dual Address Cycle (DAC) command is used to transfer a 64-bit address to devices
that support 64-bit addressing when the address is not in the low 4-GB address space.

Revision 2.3

23

Targets that support only 32-bit addresses must treat this command as reserved and not
respond to the current transaction in any way.

The Memory Read Line command is semantically identical to the Memory Read
command except that it additionally indicates that the master intends to fetch a complete
cacheline. This command is intended to be used with bulk sequential data transfers
where the memory system (and the requesting master) might gain some performance
advantage by reading up to a cacheline boundary in response to the request rather than a
single memory cycle. As with the Memory Read command, pre-fetched buffers must be
invalidated before any synchronization events are passed through this access path.

The Memory Write and Invalidate command is semantically identical to the Memory
Write command except that it additionally guarantees a minimum transfer of one
complete cacheline; i.e., the master intends to write all bytes within the addressed
cacheline in a single PCI transaction unless interrupted by the target. Note: All byte
enables must be asserted during each data phase for this command. The master may
allow the transaction to cross a cacheline boundary only if it intends to transfer the entire
next line also. This command requires implementation of a configuration register in the
master indicating the cacheline size (refer to Section 6.2.4. for more information) and
may only be used with Linear Burst Ordering (refer to Section 3.2.2.2.). It allows a
memory performance optimization by invalidating a "dirty" line in a write-back cache
without requiring the actual write-back cycle thus shortening access time.

3.1.2. Command Usage Rules

All PCI devices (except host bus bridges) are required to respond as a target to
configuration (read and write) commands. All other commands are optional.

A master may implement the optional commands as needed. A target may also
implement the optional commands as needed, but if it implements basic memory
commands, it must support all the memory commands, including Memory Write and
Invalidate, Memory Read Line, and Memory Read Multiple. If not fully implemented,
these performance optimizing commands must be aliased to the basic memory
commands. For example, a target may not implement the Memory Read Line command;
however, it must accept the request (if the address is decoded for a memory access) and
treat it as a Memory Read command. Similarly, a target may not implement the Memory
Write and Invalidate command, but must accept the request (if the address is decoded for
a memory access) and treat it as a Memory Write command.

For block data transfers to/from system memory, Memory Write and Invalidate, Memory
Read Line, and Memory Read Multiple are the recommended commands for masters
capable of supporting them. The Memory Read or Memory Write commands can be
used if for some reason the master is not capable of using the performance optimizing
commands. For masters using the memory read commands, any length access will work
for all commands; however, the preferred use is shown below.

While Memory Write and Invalidate is the only command that requires implementation
of the Cacheline Size register, it is strongly suggested the memory read commands use it
as well. A bridge that prefetches is responsible for any latent data not consumed by the
master.

Revision 2.3

24

Memory command recommendations vary depending on the characteristics of the
memory location and the amount of data being read. Memory locations are
characterized as either prefetchable or non-prefetchable. Prefetchable memory has the
following characteristics:

• There are no side effects of a read operation. The read operation cannot be
destructive to either the data or any other state information. For example, a FIFO
that advances to the next data when read would not be prefetchable. Similarly, a
location that cleared a status bit when read would not be prefetchable.

• When read, the device is required to return all bytes regardless of the byte enables
(four or eight depending upon the width of the data transfer (refer to Section 3.8.1.)).

• Bridges are permitted to merge writes into this range (refer to Section 3.2.6.).

 All other memory is considered to be non-prefetchable.

 The preferred use of the read commands is:

 Memory Read When reading data in an address range that has side-
effects (not prefetchable) or reading a single DWORD

 Memory Read Line Reading more than a DWORD up to the next cacheline
boundary in a prefetchable address space

 Memory Read Multiple Reading a block which crosses a cacheline boundary
(stay one cacheline ahead of the master if possible) of
data in a prefetchable address range

 The target should treat the read commands the same even though they do not address the
first DWORD of the cacheline. For example, a target that is addressed at DWORD 1
(instead of DWORD 0) should only prefetch to the end of the current cacheline. If the
Cacheline Size register is not implemented, then the master should assume a cacheline
size of either 16 or 32 bytes and use the read commands recommended above. (This
assumes linear burst ordering.)

Revision 2.3

25

 Implementation Note: Using Read Commands

 Different read commands will have different affects on system performance because host
bridges and PCI-to-PCI bridges must treat the commands differently. When the Memory
Read command is used, a bridge will generally obtain only the data the master requested
and no more since a side-effect may exist. The bridge cannot read more because it does
not know which bytes are required for the next data phase. That information is not
available until the current data phase completes. However, for Memory Read Line and
Memory Read Multiple, the master guarantees that the address range is prefetchable,
and, therefore, the bridge can obtain more data than the master actually requested. This
process increases system performance when the bridge can prefetch and the master
requires more than a single DWORD. (Refer to the PCI-PCI Bridge Architecture
Specification for additional details and special cases.)

 As an example, suppose a master needed to read three DWORDs from a target on the
other side of a PCI-to-PCI bridge. If the master used the Memory Read command, the
bridge could not begin reading the second DWORD from the target because it does not
have the next set of byte enables and, therefore, will terminate the transaction after a
single data transfer. If, however, the master used the Memory Read Line command, the
bridge would be free to burst data from the target through the end of the cacheline
allowing the data to flow to the master more quickly.

 The Memory Read Multiple command allows bridges to prefetch data farther ahead of
the master, thereby increasing the chances that a burst transfer can be sustained.

 It is highly recommended that the Cacheline Size register be implemented to ensure
correct use of the read commands. The Cacheline Size register must be implemented
when using the optional Cacheline Wrap mode burst ordering.

 Using the correct read command gives optimal performance. If, however, not all read
commands are implemented, then choose the ones which work the best most of the time.
For example, if the large majority of accesses by the master read entire cachelines and
only a small number of accesses read more than a cacheline, it would be reasonable for
the device to only use the Memory Read Line command for both types of accesses.

 A bridge that prefetches is responsible for any latent data not consumed by the master.
The simplest way for the bridge to correctly handle latent data is to simply mark it
invalid at the end of the current transaction.

 Implementation Note: Stale-Data Problems Caused By Not
Discarding Prefetch Data

 Suppose a CPU has two buffers in adjacent main memory locations. The CPU prepares
a message for a bus master in the first buffer and then signals the bus master to pick up
the message. When the bus master reads its message, a bridge between the bus master
and main memory prefetches subsequent addresses, including the second buffer location.

 Some time later the CPU prepares a second message using the second buffer in main
memory and signals the bus master to come and get it. If the intervening bridge has not
flushed the balance of the previous prefetch, then when the master attempts to read the
second buffer the bridge may deliver stale data.

 Similarly, if a device were to poll a memory location behind a bridge, the device would
never observe a new value of the location if the bridge did not flush the buffer after each
time the device read it.

Revision 2.3

26

 3.2. PCI Protocol Fundamentals
 The basic bus transfer mechanism on PCI is a burst. A burst is composed of an address
phase and one or more data phases. PCI supports bursts in both Memory and I/O
Address Spaces.

 All signals are sampled on the rising edge of the clock9. Each signal has a setup and
hold aperture with respect to the rising clock edge, in which transitions are not allowed.
Outside this aperture, signal values or transitions have no significance. This aperture
occurs only on "qualified" rising clock edges for AD[31::00], AD[63::32], PAR10,
PAR64, and IDSEL signals11 and on every rising clock edge for LOCK#, IRDY#,
TRDY#, FRAME#, DEVSEL#, STOP#, REQ#, GNT#, REQ64#, ACK64#, SERR#
(on the falling edge of SERR# only), and PERR#. C/BE[3::0]#, C/BE[7::4]# (as bus
commands) are qualified on the clock edge that FRAME# is first asserted.
C/BE[3::0]#, C/BE[7::4]# (as byte enables) are qualified on each rising clock edge
following the completion of an address phase or data phase and remain valid the entire
data phase. RST#, INTA#, INTB#, INTC#, and INTD# are not qualified nor
synchronous.

 3.2.1. Basic Transfer Control

 The fundamentals of all PCI data transfers are controlled with three signals (see
Figure 3-5).

 FRAME# is driven by the master to indicate the beginning and end of a
transaction.

 IRDY# is driven by the master to indicate that it is ready to transfer data.

 TRDY# is driven by the target to indicate that it is ready to transfer data.

 The interface is in the Idle state when both FRAME# and IRDY# are deasserted. The
first clock edge on which FRAME# is asserted is the address phase, and the address and
bus command code are transferred on that clock edge. The next12 clock edge begins the
first of one or more data phases during which data is transferred between master and
target on each clock edge for which both IRDY# and TRDY# are asserted. Wait cycles
may be inserted in a data phase by either the master or the target when IRDY# or
TRDY# is deasserted.

 The source of the data is required to assert its xRDY# signal unconditionally when data
is valid (IRDY# on a write transaction, TRDY# on a read transaction). The receiving
agent may delay the assertion of its xRDY# when it is not ready to accept data. When
delaying the assertion of its xRDY#, the target and master must meet the latency
requirements specified in Sections 3.5.1.1. and 3.5.2. In all cases, data is only
transferred when IRDY# and TRDY# are both asserted on the same rising clock edge.

 9 The only exceptions are RST#, INTA#, INTB#, INTC#, and INTD# which are discussed in
Sections 2.2.1. and 2.2.6.

 10 PAR and PAR64 are treated like an AD line delayed by one clock.

 11 The notion of qualifying IDSEL signals is fully defined in Section 3.6.3.

 12 The address phase consists of two clocks when the command is the Dual Address Cycle (DAC).

Revision 2.3

27

 Once a master has asserted IRDY#, it cannot change IRDY# or FRAME# until the
current data phase completes regardless of the state of TRDY#. Once a target has
asserted TRDY# or STOP#, it cannot change DEVSEL#, TRDY#, or STOP# until the
current data phase completes. Neither the master nor the target can change its mind once
it has committed to the current data transfer until the current data phase completes. (A
data phase completes when IRDY# and [TRDY# or STOP#] are asserted.) Data may or
may not transfer depending on the state of TRDY#.

 At such time as the master intends to complete only one more data transfer (which could
be immediately after the address phase), FRAME# is deasserted and IRDY# is asserted
indicating the master is ready. After the target indicates that it is ready to complete the
final data transfer (TRDY# is asserted), the interface returns to the Idle state with both
FRAME# and IRDY# deasserted.

 3.2.2. Addressing

 PCI defines three physical address spaces. The Memory and I/O Address Spaces are
customary. The Configuration Address Space has been defined to support PCI hardware
configuration. Accesses to this space are further described in Section 3.2.2.3.

 PCI targets (except host bus bridges) are required to implement Base Address register(s)
to request a range of addresses which can be used to provide access to internal registers
or functions (refer to Chapter 6 for more details). The configuration software uses the
Base Address register to determine how much space a device requires in a given address
space and then assigns (if possible) where in that space the device will reside.

 Implementation Note: Device Address Space

 It is highly recommended, that a device request (via Base Address register(s)) that its
internal registers be mapped into Memory Space and not I/O Space. Although the use of
I/O Space is allowed, I/O Space is limited and highly fragmented in PC systems and will
become more difficult to allocate in the future. Requesting Memory Space instead of
I/O Space allows a device to be used in a system that does not support I/O Space. A
device may map its internal register into both Memory Space and optionally I/O Space
by using two Base Address registers, one for I/O and the other for Memory. The system
configuration software will allocate (if possible) space to each Base Address register.
When the agent’s device driver is called, it determines which address space is to be used
to access the device. If the preferred access mechanism is I/O Space and the I/O Base
Address register was initialized, then the driver would access the device using I/O bus
transactions to the I/O Address Space assigned. Otherwise, the device driver would be
required to use memory accesses to the address space defined by the Memory Base
Address register. Note: Both Base Address registers provide access to the same
registers internally.

 When a transaction is initiated on the interface, each potential target compares the
address with its Base Address register(s) to determine if it is the target of the current
transaction. If it is the target, the device asserts DEVSEL# to claim the access. For
more details about DEVSEL# generation, refer to Section 3.2.2.3.2. How a target
completes address decode in each address space is discussed in the following sections.

Revision 2.3

28

 3.2.2.1. I/O Space Decoding

 In the I/O Address Space, all 32 AD lines are used to provide a full byte address. The
master that initiates an I/O transaction is required to ensure that AD[1::0] indicate the
least significant valid byte for the transaction.

 The byte enables indicate the size of the transfer and the affected bytes within the
DWORD and must be consistent with AD[1::0]. Table 3-1 lists the valid combinations
for AD[1::0] and the byte enables for the initial data phase.

 Table 3-1: Byte Enables and AD[1::0] Encodings

AD[1::0] Starting Byte Valid BE#[3:0] Combinations
00 Byte 0 xxx0 or 1111
01 Byte 1 xx01 or 1111
10 Byte 2 x011 or 1111
11 Byte 3 0111 or 1111

 Note: If BE#[3::0] = 1111, AD[1::0] can have any value.

 A function may restrict what type of access(es) it supports in I/O Space. For example, a
device may restrict its driver to only access the function using byte, word, or DWORD
operations and is free to terminate all other accesses with Target-Abort. How a device
uses AD[1::0] and BE#[3::0] to determine which accesses violate its addressing
restrictions is implementation specific.

 A device (other than an expansion bus bridge) that claims legacy I/O addresses whenever
its I/O Space enable bit is set (i.e., without the use of Base Address Registers) is referred
to as a legacy I/O device. Legacy I/O devices are discussed in Appendix G.

 3.2.2.2. Memory Space Decoding

 In the Memory Address Space, the AD[31::02] bus provides a DWORD aligned
address. AD[1::0] are not part of the address decode. However, AD[1::0] indicate the
order in which the master is requesting the data to be transferred.

Revision 2.3

29

 Table 3-2 lists the burst ordering requested by the master during Memory commands as
indicated on AD[1::0].

 Table 3-2: Burst Ordering Encoding

 AD1 AD0 Burst Order
 0 0 Linear Incrementing
 0 1 Reserved (disconnect after first data phase)13

 1 0 Cacheline Wrap mode
 1 1 Reserved (disconnect after first data phase)

 All targets are required to check AD[1::0] during a memory command transaction and
either provide the requested burst order or terminate the transaction with Disconnect in
one of two ways. The target can use Disconnect With Data during the initial data phase
or Disconnect Without Data for the second data phase. With either termination, only a
single data phase transfers data. The target is not allowed to terminate the transaction
with Retry solely because it does not support a specific burst order. If the target does not
support the burst order requested by the master, the target must complete one data phase
and then terminate the request with Disconnect. This ensures that the transaction will
complete (albeit slowly, since each request will complete as a single data phase
transaction). If a target supports bursting on the bus, the target must support the linear
burst ordering. Support for cacheline wrap is optional.

 In linear burst order mode, the address is assumed to increment by one DWORD (four
bytes) for 32-bit transactions and two DWORDs (eight bytes) for 64-bit transactions
after each data phase until the transaction is terminated (an exception is described in
Section 3.9.). Transactions using the Memory Write and Invalidate command can only
use the linear incrementing burst mode.

 A cacheline wrap burst may begin at any address offset within the cacheline. The length
of a cacheline is defined by the Cacheline Size register (refer to Section 6.2.4.) in
Configuration Space which is initialized by configuration software. The access proceeds
by incrementing one DWORD address (two DWORDS for a 64-bit data transaction)
until the end of the cacheline has been reached, and then wraps to the beginning of the
same cacheline. It continues until the rest of the line has been transferred. For example,
an access where the cacheline size is 16 bytes (four DWORDs) and the transaction
addresses DWORD 08h, the sequence for a 32-bit transaction would be:

 First data phase is to DWORD 08h

 Second data phase is to DWORD 0Ch (which is the end of the current cacheline)

 Third data phase is to DWORD 00h (which is the beginning of the addressed
cacheline)

 Last data phase is to DWORD 04h (which completes access to the entire cacheline)

 13 This encoded value is reserved and cannot be assigned any “new” meaning for new designs. New
designs (master or targets) cannot use this encoding. Note that in an earlier version of this specification,
this encoding had meaning and there are masters that generate it and some targets may allow the
transaction to continue past the initial data phase.

Revision 2.3

30

 If the burst continues once a complete cacheline has been accessed, the burst continues
at the same DWORD offset of the next cacheline. Continuing the burst of the previous
example would be:

 Fifth data phase is to DWORD 18h

 Sixth data phase is to DWORD 1Ch (which is the end of the second cacheline)

 Seventh data phase is to DWORD 10h (which is the beginning of the second
cacheline)

 Last data phase is to DWORD 14h (which completes access to the second
cacheline)

 If a target does not implement the Cacheline Size register, the target must signal
Disconnect with or after the completion of the first data phase if Cacheline Wrap or a
reserved mode is used.

 If a master starts with one burst ordering, it cannot change the burst ordering until the
current transaction ends, since the burst ordering information is provided on AD[1::0]
during the address phase.

 A device may restrict what access granularity it supports in Memory Space. For
example, a device may restrict its driver to only access the device using byte, word, or
DWORD operations and is free to terminate all other accesses with Target-Abort.

 3.2.2.3. Configuration Space Decoding

 Every device, other than host bus bridges, must implement Configuration Address
Space. Host bus bridges may optionally implement Configuration Address Space. In the
Configuration Address Space, each function is assigned a unique 256-byte space that is
accessed differently than I/O or Memory Address Spaces. Configuration registers are
described in Chapter 6. The following sections describe:

• Configuration commands (Type 0 and Type 1)

• Software generation of configuration commands

• Software generation of Special Cycles

• Selection of a device’s Configuration Space

• System generation of IDSEL

 3.2.2.3.1. Configuration Commands (Type 0 and Type 1)

 Because of electrical loading issues, the number of devices that can be supported on a
given bus segment is limited. To allow systems to be built beyond a single bus segment,
PCI-to-PCI bridges are defined. A PCI-to-PCI bridge requires a mechanism to know
how and when to forward configuration accesses to devices that reside behind the bridge.

 To support hierarchical PCI buses, two types of configuration transactions are used.
They have the formats illustrated in Figure 3-1, which shows the interpretation of AD
lines during the address phase of a configuration transaction.

Revision 2.3

31

03 1 10

R eserved

1 5 1278

D e vic e
N u m b e r

16

 B u s
N u m b e r

R eg is ter
 N u m b er

F u n ction
 N u m b er

2 324

03 1

R eserved

1278

R eg is ter
 N u m b er

F u n ction
 N u m b er 0

11

0

11 10

Type 0

T ype 1

0 1

 Figure 3-1: Address Phase Formats of Configuration Transactions

 Type 1 and Type 0 configuration transactions are differentiated by the values on
AD[1::0]. A Type 0 configuration transaction (when AD[1::0] = "00") is used to select
a device on the bus where the transaction is being run. A Type 1 configuration
transaction (when AD[1::0] = "01") is used to pass a configuration request to another
bus segment.

 The Register Number and Function Number fields have the same meaning for both
configuration types, and Device Number and Bus Number are used only in Type 1
transactions. Targets must ignore reserved fields.

 Register
Number

 is an encoded value used to select a DWORD in the
Configuration Space of the intended target.

 Function
Number

 is an encoded value used to select one of eight possible
functions on a multifunction device.

 Device
Number

 is an encoded value used to select one of 32 devices on a
given bus. (Refer to Section 3.2.2.3.5. for limitations on
the number of devices supported.)

 Bus
Number

 is an encoded value used to select 1 of 256 buses in a
system.

 Bridges (both host and PCI-to-PCI) that need to generate a Type 0 configuration
transaction use the Device Number to select which IDSEL to assert. The Function
Number is provided on AD[10::08]. The Register Number is provided on AD[7::2].
AD[1::0] must be "00" for a Type 0 configuration transaction.

 A Type 0 configuration transaction is not propagated beyond the local PCI bus and must
be claimed by a local device or terminated with Master-Abort.

 If the target of a configuration transaction resides on another bus (not the local bus), a
Type 1 configuration transaction must be used. All targets except PCI-to-PCI bridges
ignore Type 1 configuration transactions. PCI-to-PCI bridges decode the Bus Number
field to determine if the destination bus of the configuration transaction resides behind
the bridge. If the Bus Number is not for a bus behind the bridge, the transaction is
ignored. The bridge claims the transaction if the transaction is to a bus behind the
bridge. If the Bus Number is not to the secondary bus of the bridge, the transaction is
simply passed through unchanged. If the Bus Number matches the secondary bus
number, the bridge converts the transaction into a Type 0 configuration transaction. The
bridge changes AD[1::0] to "00" and passes AD[10::02] through unchanged. The

Revision 2.3

32

Device Number is decoded to select one of 32 devices on the local bus. The bridge
asserts the correct IDSEL and initiates a Type 0 configuration transaction. Note: PCI-
to-PCI bridges can also forward configuration transactions upstream (refer to the PCI-to-
PCI Bridge Architecture Specification for more information).

 A standard expansion bus bridge must not forward a configuration transaction to an
expansion bus.

 3.2.2.3.2. Software Generation of Configuration Transactions

 Systems must provide a mechanism that allows software to generate PCI configuration
transactions. This mechanism is typically located in the host bridge. For PC-AT
compatible systems, the mechanism14 for generating configuration transactions is
defined and specified in this section. A device driver should use the API provided by the
operating system to access the Configuration Space of its device and not directly by way
of the hardware mechanism. For other system architectures, the method of generating
configuration transactions is not defined in this specification.

 Two DWORD I/O locations are used to generate configuration transactions for PC-AT
compatible systems. The first DWORD location (CF8h) references a read/write register
that is named CONFIG_ADDRESS. The second DWORD address (CFCh) references a
read/write register named CONFIG_DATA. The CONFIG_ADDRESS register is 32
bits with the format shown in Figure 3-2. Bit 31 is an enable flag for determining when
accesses to CONFIG_DATA are to be translated to configuration transactions on the PCI
bus. Bits 30 to 24 are reserved, read-only, and must return 0's when read. Bits 23
through 16 choose a specific PCI bus in the system. Bits 15 through 11 choose a specific
device on the bus. Bits 10 through 8 choose a specific function in a device (if the device
supports multiple functions). Bits 7 through 2 choose a DWORD in the device's
Configuration Space. Bits 1 and 0 are read-only and must return 0's when read.

 Enable bit ('1' = enabled, '0' = disabled)

031 10

Reserved

15 1278

Device
Number

16

 Bus
Number

Register
Number

Function
Number

2324 11

0 0

30

 Figure 3-2: Layout of CONFIG_ADDRESS Register

 Anytime a host bridge sees a full DWORD I/O write from the host to
CONFIG_ADDRESS, the bridge must latch the data into its CONFIG_ADDRESS
register. On full DWORD I/O reads to CONFIG_ADDRESS, the bridge must return the
data in CONFIG_ADDRESS. Any other types of accesses to this address (non-
DWORD) have no effect on CONFIG_ADDRESS and are executed as normal I/O
transactions on the PCI bus. Therefore, the only I/O Space consumed by this register is a
DWORD at the given address. I/O devices that share the same address but use BYTE or
WORD registers are not affected because their transactions will pass through the host
bridge unchanged.

 14 In versions 2.0 and 2.1 of this specification, two mechanisms were defined. However, only one
mechanism (Configuration Mechanism #1) was allowed for new designs and the other (Configuration
Mechanism #2) was included for reference.

Revision 2.3

33

 When a host bridge sees an I/O access that falls inside the DWORD beginning at
CONFIG_DATA address, it checks the Enable bit and the Bus Number in the
CONFIG_ADDRESS register. If the Enable bit is set and the Bus Number matches the
bridge's Bus Number or any Bus Number behind the bridge, a configuration cycle
translation must be done.

 There are two types of translation that take place. The first, Type 0, is a translation
where the device being addressed is on the PCI bus connected to the host bridge. The
second, Type 1, occurs when the device is on another bus somewhere behind this bridge.

 For Type 0 translations (see Figure 3-3), the host bridge does a decode of the Device
Number field to assert the appropriate IDSEL line15 and performs a configuration
transaction on the PCI bus where AD[1::0] = "00". Bits 10 - 8 of CONFIG_ADDRESS
are copied to AD[10::8] on the PCI bus as an encoded value which is used by
components that contain multiple functions. AD[7::2] are also copied from the
CONFIG_ADDRESS register. Figure 3-3 shows the translation from the
CONFIG_ADDRESS register to AD lines on the PCI bus.

0 0
Register
Number

Device
Number

Bus
NumberReserved

1278111516232431 30 010

01011

Only One ‘1’ 0 0

31

CONFIG_ADDRESS

PCI AD BUS

Function
Number

Enable bit
‘1’ = enabled
‘0’ = disabled

 Figure 3-3: Host Bridge Translation for Type 0 Configuration Transactions Address Phase

 For Type 1 translations, the host bridge directly copies the contents of the
CONFIG_ADDRESS register (excluding bits 31 and 0) onto the PCI AD lines during the
address phase of a configuration transaction making sure that AD[1::0] is "01".

 In both Type 0 and Type 1 translations, byte enables for the data transfers must be
directly copied from the processor bus.

 15 If the Device Number field selects an IDSEL line that the bridge does not implement, the bridge must
complete the processor access normally, dropping the data on writes and returning all ones on reads. The
bridge may optionally implement this requirement by performing a Type 0 configuration access with no
IDSEL asserted. This will terminate with Master-Abort which drops write data and returns all ones on
reads.

Revision 2.3

34

 Implementation Note: Bus Number Registers and Peer Host Bridges

 For host bridges that do not support peer host buses, translating configuration accesses
into configuration transactions is simple. If the Bus Number in the
CONFIG_ADDRESS register is zero, a Type 0 configuration translation is used. If the
Bus Number in the CONFIG_ADDRESS register is non-zero, a Type 1 configuration
translation is used.

 For host bridges that support peer host buses, one peer bridge typically is designated to
always acknowledge accesses to the CONFIG_ADDRESS register. Other peer bridges
would snoop the data written to this register. Accesses to the CONFIG_DATA register
are typically handshaken by the bridge doing the configuration translation.

 Host bridges that support peer host buses require two Configuration Space registers
whose contents are used to determine when the bridge does configuration transaction
translation. One register (Bus Number) specifies the bus number of the PCI bus directly
behind the bridge, and the other register (Subordinate Bus Number) specifies the number
of the last hierarchical bus behind the bridge. (A PCI-to-PCI bridge requires an
additional register, which is its Primary Bus Number.) System configuration software is
responsible for initializing these registers to appropriate values. The host bridge
determines the configuration translation type (1 or 0) based on the value of the bus
number in the CONFIG_ADDRESS register. If the Bus Number in the
CONFIG_ADDRESS register matches the Bus Number register, a Type 0 configuration
transaction is used. If the Bus Number in CONFIG_ADDRESS is greater than the Bus
Number register and less than or equal to the Subordinate Bus Number register, a Type 1
configuration transaction is used. If the Bus Number in CONFIG_ADDRESS is less
than the Bus Number register or greater than the Subordinate Bus Number register, the
configuration transaction is addressing a bus that is not implemented or is behind some
other host bridge and is ignored.

 3.2.2.3.3. Software Generation of Special Cycles

 This section defines how a host bridge in a PC-AT compatible systems may optionally
implement the configuration mechanism for accessing Configuration Space to allow
software to generate a transaction that uses a Special Cycle command. Host bridges are
not required to provide a mechanism for allowing software to generate a transaction
using a Special Cycle command.

 When the CONFIG_ADDRESS register is written with a value such that the Bus
Number matches the bridge's bus number, the Device Number is all 1's, the Function
Number is all 1's, and the Register Number has a value of zero, then the bridge is primed
to generate a transaction using a Special Cycle command the next time the
CONFIG_DATA register is written. When the CONFIG_DATA register is written, the
bridge generates a transaction that uses a Special Cycle command encoding (rather than
Configuration Write command) on the C/BE[3::0]# pins during the address phase and
drives the data from the I/O write onto AD[31::00] during the first data phase. After
CONFIG_ADDRESS has been set up this way, reads to CONFIG_DATA have
undefined results. In one possible implementation, the bridge can treat it as a normal
configuration operation (i.e., generate a Type 0 configuration transaction on the PCI
bus). This will terminate with a Master-Abort and the processor will have all 1's
returned.

Revision 2.3

35

 If the Bus Number field of CONFIG_ADDRESS does not match the bridge's bus
number, then the bridge passes the write to CONFIG_DATA on through to PCI as a
Type 1 configuration transaction just like any other time the bus numbers do not match.

 3.2.2.3.4. Selection of a Device’s Configuration Space

 Accesses in the Configuration Address Space require device selection decoding to be
done externally and to be signaled to the device via initialization device select, or
IDSEL, which functions as a classical “chip select” signal. Each device has its own
IDSEL input (except for host bus bridges, which are permitted to implement their
initialization device selection internally).

 Devices that respond to Type 0 configuration cycles are separated into two types and are
differentiated by an encoding in the Configuration Space header. The first type (single-
function device) is defined for backward compatibility and only uses its IDSEL pin and
AD[1::0] to determine whether or not to respond.

 A single function device asserts DEVSEL# to claim a configuration transaction when:
• a configuration command is decoded;
• the device’s IDSEL is asserted; and
• AD[1::0] is "00" (Type 0 Configuration Command) during the Address Phase.

 Otherwise, the device ignores the current transaction. A single-function device may
optionally respond to all function numbers as the same function or may decode the
Function Number field, AD[10::08], and respond only to function 0 and not respond
(Master-Abort termination) to the other function numbers.

 The second type of device (multi-function device) decodes the Function Number field
AD[10::08] to select one of eight possible functions on the device when determining
whether or not to respond. Multi-function devices are required to do a full decode on
AD[10::08] and only respond to the configuration cycle if they have implemented the
Configuration Space registers for the selected function. They must not respond (Master-
Abort termination) to unimplemented function numbers. They are also required to
always implement function 0 in the device. Implementing other functions is optional
and may be assigned in any order (i.e., a two-function device must respond to function 0
but can choose any of the other possible function numbers (1-7) for the second function).

 If a device implements multiple independent functions, it asserts DEVSEL# to claim a
configuration transaction when:
• a configuration command is decoded;
• the target’s IDSEL is asserted;
• AD[1::0] is "00"; and
• AD[10::08] match a function that is implemented.

 Otherwise, the transaction is ignored. For example, if functions 0 and 4 are implemented
(functions 1 through 3 and 5 through 7 are not), the device would assert DEVSEL# for a
configuration transaction in which IDSEL is asserted and AD[1::0] are 00 and
AD[10::08] matches 000 or 100. AD[31::11] are ignored by a multi-function device
during an access of its configuration registers.

 The order in which configuration software probes devices residing on a bus segment is
not specified. Typically, configuration software either starts with Device Number 0 and
works up or starts at Device Number 31 and works down. If a single function device is
detected (i.e., bit 7 in the Header Type register of function 0 is 0), no more functions for
that Device Number will be checked. If a multi-function device is detected (i.e., bit 7 in

Revision 2.3

36

the Header Type register of function 0 is 1), then all remaining Function Numbers will
be checked.

 Once a function has been selected, it uses AD[7::2] to address a DWORD and the byte
enables to determine which bytes within the addressed DWORD are being accessed. A
function must not restrict the size of the access it supports in Configuration Space. The
configuration commands, like other commands, allow data to be accessed using any
combination of bytes (including a byte, word, DWORD, or non-contiguous bytes) and
multiple data phases in a burst. The target is required to handle any combination of byte
enables. However, it is not required to handle a configuration transaction that consists of
multiple data phases. If a configuration transaction consists of more than a single data
phase, the target is permitted to terminate the request with Disconnect. This is not
sufficient cause for the target to terminate the transaction with Target-Abort, since this is
not an error condition.

 If a configuration transaction has multiple data phases (burst), linear burst ordering is the
only addressing mode allowed, since AD[1::0] convey configuration transaction type
and not a burst addressing mode like Memory accesses. The implied address of each
subsequent data phase is one DWORD larger than the previous data phase. For example,
a transaction starts with AD[7::2] equal to 0000 00xxb, the sequence of a burst would
be: 0000 01xxb, 0000 10xxb, 0000 11xxb, 0001 00xxb (where xx indicate whether the
transaction is a Type 00 or Type 01 configuration transaction). The rest of the
transaction is the same as other commands including all termination semantics.
Note: The PCI-to-PCI Bridge Architecture Specification restricts Type 1 configuration
transactions that are converted into a transaction that uses a Special Cycle command to a
single data phase (no Special Cycle bursts).

 If no agent responds to a configuration transaction, the request is terminated via Master-
Abort (refer to Section 3.3.3.1.).

 3.2.2.3.5. System Generation of IDSEL

 Exactly how the IDSEL pin is driven is left to the discretion of the host/memory bridge
or system designer. This signal has been designed to allow its connection to one of the
upper 21 address lines, which are not otherwise used in a configuration access.
However, there is no specified way of determining IDSEL from the upper 21 address
bits. Therefore, the IDSEL pin must be supported by all targets. Devices must not make
an internal connection between an AD line and an internal IDSEL signal in order to save
a pin. The only exception is the host bridge, since it defines how IDSELs are mapped.
IDSEL generation behind a PCI-to-PCI bridge is specified in the PCI-to-PCI Bridge
Architecture Specification.

 The binding between a device number in the CONFIG_ADDRESS register of PC-AT
compatible system and the generation of an IDSEL is not specified. Therefore, BIOS
must scan all 32 device numbers to ensure all components are located. Note: The
hardware that converts the device number to an IDSEL is required to ensure that only a
single unique IDSEL line is asserted for each device number. Configuration transactions
that are not claimed by a device are terminated with Master-Abort. The master that
initiated this transaction sets the received Master-Abort bit in the Status register.

Revision 2.3

37

 Implementation Note: System Generation of IDSEL

 How a system generates IDSEL is system specific; however, if no other mapping is
required, the following example may be used. The IDSEL signal associated with Device
Number 0 is connected to AD[16], IDSEL of Device Number 1 is connected to AD[17],
and so forth until IDSEL of Device Number 15 is connected to AD[31]. For Device
Numbers 17-31, the host bridge should execute the transaction but not assert any of the
AD[31::16] lines but allow the access to be terminated with Master-Abort.

 Twenty-one different devices can be uniquely selected for configuration accesses by
connecting a different address line to each device and asserting one of the AD[31::11]
lines at a time. The issue with connecting one of the upper 21 AD lines to IDSEL is an
additional load on the AD line. This can be mitigated by resistively coupling IDSEL to
the appropriate AD line. This does, however, create a very slow slew rate on IDSEL,
causing it to be in an invalid logic state most of the time, as shown in Figure 3-4 with the
"XXXX" marks. However, since it is only used on the address phase of a Type 0
configuration transaction, the address bus can be pre-driven a few clocks before
FRAME#16, thus guaranteeing IDSEL to be stable when it needs to be sampled. Pre-
driving the address bus is equivalent to IDSEL stepping as discussed in Section 3.6.3.
Note that if resistive coupling is used, the bridge that generates the configuration
transaction is required to use IDSEL stepping or ensure that the clock period is
sufficiently long to allow IDSEL to become stable before initiating the configuration
transaction. For all other cycles, IDSEL is undefined and may be at a non-deterministic
level during the address phase.

 16 The number of clocks the address bus should be pre-driven is determined from the RC time constant on
IDSEL.

Revision 2.3

38

FRAME#

CLK

TRDY#

IRDY#

AD

C/BE#

ADDRESS

BE#'s

DATA

CFG-RD

IDSEL

1 2 3 4 5 6

DEVSEL#

 Figure 3-4: Configuration Read

 3.2.3. Byte Lane and Byte Enable Usage

 The bus protocol does not support automatic bus sizing on requests of a DWORD or less.
(Automatic bus sizing allows a device to request the master of the current transaction to
break the access into smaller pieces for the target to complete. For example, an 8-bit
device that is accessed with a 16-bit request could transfer the lower 8 bits and require
the master to move the upper 8 bits (of the 16-bit access) down to the lower byte lane to
complete the request.) Since all PCI devices connect to the lower 32 bits for address
decode, the device itself is required to provide this byte steering when required, or the
driver is required to place the data on the correct byte. In general, software is aware of
the characteristics of the target device and only issues appropriate length accesses.

 The bus protocol requires automatic bus sizing if a master requests a 64-bit data transfer
to a 32-bit target. In this case, the target does not indicate that it can do a 64-bit data
transfer, and the master is required to complete the current transaction using 32-bit data
transfers. For more details about 64-bit data transactions, refer to Section 3.8.

 The byte enables alone are used to determine which byte lanes carry meaningful data.
The byte enables are free to change between data phases but must be valid on the clock
that starts each data phase and must stay valid for the entire data phase. In Figure 3-5,
data phases begin on clocks 3, 5, and 7. (Changing byte enables during a read burst
transaction is generally not useful, but is permitted.) The master is free to change the
byte enables on each new data phase (although the read diagram does not show this). If
the master changes byte enables on a read transaction, it does so with the same timing as
would be used in a write transaction. If byte enables are important for the target on a
read transaction, the target must wait for the byte enables to be valid on each data phase

Revision 2.3

39

before completing the transfer; otherwise, it must return all bytes. Note: Byte enables
are valid during the entire data phase independent of the state of IRDY#.

 If a target supports prefetching (bit 3 is set in the Memory Base Address register -- refer
to Section 6.2.5.1.), it must also return all data17 regardless of which byte enables are
asserted. A target can only operate in this mode when there are no side effects (data
destroyed or status changes because of the access).

 PCI allows any contiguous or non-contiguous combination of byte enables. If no byte
enables are asserted, the target of the access must complete the data phase by asserting
TRDY# and providing parity if the transaction is a read request. The target of an access
where no byte enables are asserted must complete the current data phase without any
state change. On a read transaction, this means that data and status are not changed. If
completing the access has no affect on the data or status, the target may complete the
access by either providing data or not. The generation and checking of parity is the same
regardless of the state of the byte enables for both 32-bit and 64-bit data transfers. For a
discussion on parity generation and checking, refer to Section 3.7.1. (32-bit transactions)
and Section 3.8. (64-bit transactions).

 However, some targets may not be able to properly interpret non-contiguous patterns
(e.g., expansion bus bridges that interface to 8- and 16-bit devices). Expansion bus
bridges may optionally report patterns that are illegal on the expansion bus as an
asynchronous error (SERR#) or break the transaction into smaller transactions that are
legal for the intended agent. The target of an I/O transaction is required to signal Target-
Abort if it is unable to complete the entire access defined by the byte enables.

 3.2.4. Bus Driving and Turnaround

 A turnaround cycle is required on all signals that are driven by more than one agent.
The turnaround cycle is required to avoid contention when one agent stops driving a
signal and another agent begins driving the signal. This is indicated on the timing
diagrams as two arrows pointing at each others' tail. This turnaround cycle occurs at
different times for different signals. For instance, IRDY#, TRDY#, DEVSEL#,
STOP#, and ACK64# use the address phase as their turnaround cycle. FRAME#,
REQ64#, C/BE[3::0]#, C/BE[7::4]#, AD[31::00], and AD[63::32] use the Idle state
between transactions as their turnaround cycle. The turnaround cycle for LOCK# occurs
one clock after the current owner releases it. PERR# has a turnaround cycle on the
fourth clock after the last data phase, which is three clocks after the turnaround-cycle for
the AD lines. An Idle state is when both FRAME# and IRDY# are deasserted (e.g.,
clock 9 in Figure 3-5).

 All AD lines (including AD[63::32] when the master supports a 64-bit data path) must
be driven to stable values during 64-bit transfers every address and data phase. Even
byte lanes not involved in the current data transfer must physically drive stable (albeit
meaningless) data onto the bus. The motivation is for parity calculations and to keep
input buffers on byte lanes not involved in the transfer from switching at the threshold
level and, more generally, to facilitate fast metastability-free latching. In power-
sensitive applications, it is recommended that in the interest of minimizing bus switching
power consumption, byte lanes not being used in the current bus phase should be driven

 17 For a 32-bit data transfer, this means 4 bytes per data phase; for a 64-bit data transfer, this means 8 bytes
per data phase.

Revision 2.3

40

with the same data as contained in the previous bus phase. In applications that are not
power sensitive, the agent driving the AD lines may drive whatever it desires on unused
byte lanes. Parity must be calculated on all bytes regardless of the byte enables.

 3.2.5. Transaction Ordering and Posting

 Transaction ordering rules on PCI accomplish three things. First, they satisfy the write-
results ordering requirements of the Producer-Consumer Model. This means that the
results of writes from one master (the Producer) anywhere in the system are observable
by another master (the Consumer) anywhere in the system only in their original order.
(Different masters (Producers) in different places in the system have no fundamental
need for their writes to happen in a particular order with respect to each other, since each
will have a different Consumer. In this case, the rules allow for some writes to be
rearranged.) Refer to Appendix E for a complete discussion of the Producer-Consumer
Model. Second, they allow for some transactions to be posted to improve performance.
And third, they prevent bus deadlock conditions, when posting buffers have to be flushed
to meet the first requirement.

 The order relationship of a given transaction with respect to other transactions is
determined when it completes; i.e., when data is transferred. Transactions which
terminate with Retry have not completed since no data was transferred and, therefore,
have no ordering requirements relative to each other. Transactions that terminate with
Master-Abort or Target-Abort are considered completed with or without data being
transferred and will not be repeated by the master. The system may accept requests in
any order, completing one while continuing to Retry another. If a master requires one
transaction to be completed before another, the master must not attempt the second
transaction until the first one is complete. If a master has only one outstanding request at
a time, then that master’s transactions will complete throughout the system in the same
order the master executed them. Refer to Section 3.3.3.3.5. for further discussion of
request ordering.

 Transactions can be divided into two general groups based on how they are handled by
an intermediate agent, such as a bridge. The two groups are posted and non-posted
transactions. Posted transactions complete at the originating device before they reach
their ultimate destination. The master will often proceed with other work, sometimes
including other bus transactions, before the posted transaction reaches it ultimate
destination. In essence, the intermediate agent of the access (e.g., a bridge) accepts the
data on behalf of the actual target and assumes responsibility for ensuring that the access
completes at the final destination. Memory writes (Memory Write and Memory Write
and Invalidate commands) are allowed to be posted on the PCI bus.

 Non-posted transactions reach their ultimate destination before completing at the
originating device. The master cannot proceed with any other work until the transaction
has completed at the ultimate destination (if a dependency exists). Memory read
transactions (Memory Read, Memory Read Line, and Memory Read Multiple), I/O
transactions (I/O Read and I/O Write), and configuration transactions (Configuration
Read and Configuration Write) are non-posted (except as noted below for host bridges).

 There are two categories of devices with different requirements for transaction ordering
and posting. Each category will be presented separately.

Revision 2.3

41

 3.2.5.1. Transaction Ordering and Posting for Simple Devices

 A simple device is any device that while acting as a bus master does not require its write
data to be posted at the bus interface logic. Generally devices that do not connect to
local CPUs are implemented as simple devices.

 The target and master state machines in the PCI interface of a simple device are
completely independent. A device cannot make the completion of any transaction
(either posted or non-posted) as a target contingent upon the prior completion of any
other transaction as a master. Simple devices are allowed to terminate a transaction with
Retry only to execute the transaction as a Delayed Transaction or for temporary
conditions which are guaranteed to be resolved with time; e.g., during a video screen
refresh or while a transaction buffer is filled with transactions moving in the same
direction. (Refer to Section 3.5.3. for a limit on the length of time a memory write
transaction can be terminated with Retry.)

 Implementation Note: Deadlock When Target and Master Not
Independent

 The following is an example of a deadlock that could occur if devices do not make their
target and master interfaces independent.

 Suppose two devices, Device A and Device B, are talking directly to each other. Both
devices attempt I/O writes to each other simultaneously. Suppose Device A is granted
the bus first and executes its I/O write addressing Device B. Device B decodes its
address and asserts DEVSEL#. Further, suppose that Device B violates the requirement
for the target state machine to be independent of the master state machine and always
terminates transactions as a target with Retry until its master state machine completes its
outstanding requests. Since Device B also has an I/O transaction it must execute as a
master, it terminates Device A’s transaction with Retry.

 Device B is then granted the bus, and Device B executes its I/O write addressing Device
A. If Device A responds the same way Device B did, the system will deadlock.

Revision 2.3

42

 Implementation Note: Deadlock When Posted Write Data is Not
Accepted

 Deadlocks can also occur when a device does not accept a memory write transaction
from a bridge. As described below, a bridge is required in certain cases to flush its
posting buffer as a master before it completes a transaction as a target. Suppose a PCI-
to-PCI bridge contains posted memory write data addressed to a downstream device.
But before the bridge can acquire the downstream bus to do the write transaction, a
downstream device initiates a read from host memory. Since requirement 3 in the bridge
rules presented below states that posting buffers must be flushed before a read
transaction can be completed, the bridge must Retry the agent’s read and attempt a write
transaction. If the downstream device were to make the acceptance of the write data
contingent upon the prior completion of the retried read transaction (that is, if it could
not accept the posted write until it first completed the read transaction), the bus would be
deadlocked.

 Since certain PCI-to-PCI bridge devices designed to previous versions of this
specification require their posting buffer to be flushed before starting any non-posted
transaction, the same deadlock could occur if the downstream device makes the
acceptance of a posted write contingent on the prior completion of any non-posted
transaction.

 The required independence of target and master state machines in a simple device
implies that a simple device cannot internally post any outbound transactions. For
example, if during the course of performing its intended function a device must execute
a memory write as a master on the PCI bus, the device cannot post that memory write in
the master interface of the device. More specifically, the device cannot proceed to other
internal operations such as updating status registers that would be observable by another
master in the system. The simple device must wait until the memory write transaction
completes on the PCI bus (TRDY# asserted; Master-Abort or Target-Abort) before
proceeding internally.

 Simple devices are strongly encouraged to post inbound memory write transactions to
speed the transaction on the PCI bus. How such a device deals with ordering of inbound
posted write data is strictly implementation dependent and beyond the scope of this
specification.

 Simple devices do not support exclusive accesses and do not use the LOCK# signal.
Refer to Appendix F for a discussion of the use of LOCK# in bridge devices.

 3.2.5.2. Transaction Ordering and Posting for Bridges

 A bridge device is any device that implements internal posting of outbound memory
write transactions, i.e., write transactions that must be executed by the device as a master
on the PCI bus. Bridges normally join two buses such as two PCI buses, a host bus and a
PCI bus, or a PCI bus and a bus for a local CPU; i.e., a peripheral CPU.

Revision 2.3

43

 Bridges are permitted to post memory write transactions moving in either direction
through the bridge. The following ordering rules guarantee that the results of one
master’s write transactions are observable by other masters in the proper order, even
though the write transaction may be posted in a bridge. They also guarantee that the bus
does not deadlock when a bridge tries to empty its posting buffers.

• Posted memory writes moving in the same direction through a bridge will complete
on the destination bus in the same order they complete on the originating bus. Even
if a single burst on the originating bus is terminated with Disconnect on the
destination bus so that it is broken into multiple transactions, those transactions must
not allow the data phases to complete on the destination bus in any order other than
their order on the originating bus.

• Write transactions flowing in one direction through a bridge have no ordering
requirements with respect to writes flowing in the other direction through the bridge.

• Posted memory write buffers in both directions must be flushed before completing a
read transaction in either direction. Posted memory writes originating on the same
side of the bridge as a read transaction, and completing before the read command
completes on the originating bus, must complete on the destination bus in the same
order. Posted memory writes originating on the opposite side of the bridge from a
read transaction and completing on the read-destination bus before the read
command completes on the read-destination bus must complete on the read-origin
bus in the same order. In other words, a read transaction must push ahead of it
through the bridge any posted writes originating on the same side of the bridge and
posted before the read. In addition, before the read transaction can complete on its
originating bus, it must pull out of the bridge any posted writes that originated on the
opposite side and were posted before the read command completes on the read-
destination bus.

• A bridge can never make the acceptance (posting) of a memory write transaction as a
target contingent on the prior completion of a non-locked transaction as a master on
the same bus. A bridge can make the acceptance of a memory write transaction as a
target contingent on the prior completion of a locked transaction as a master only if
the bridge has already established a locked operation with its intended target;
otherwise, a deadlock may occur. (Refer to Appendix F for a discussion of the use
of LOCK# in bridge devices.) In all other cases, bridges are allowed to refuse to
accept a memory write only for temporary conditions which are guaranteed to be
resolved with time, e.g., during a video screen refresh or while the memory buffer is
filled by previous memory write transactions moving in the same direction.

 Host bus bridges are permitted to post I/O write transactions that originate on the host
bus and complete on a PCI bus segment when they follow the ordering rules described in
this specification and do not cause a deadlock. This means that when a host bus bridge
posts an I/O write transaction that originated on the host bus, it must provide a deadlock
free environment when the transaction completes on PCI. The transaction will complete
on the destination PCI bus before completing on the originating PCI bus.

 Since memory write transactions may be posted in bridges anywhere in the system, and
I/O writes may be posted in the host bus bridge, a master cannot automatically tell when
its write transaction completes at the final destination. For a device driver to guarantee
that a write has completed at the actual target (and not at an intermediate bridge), it must
complete a read to the same device that the write targeted. The read (memory or I/O)
forces all bridges between the originating master and the actual target to flush all posted

Revision 2.3

44

data before allowing the read to complete. For additional details on device drivers, refer
to Section 6.5. Refer to Section 3.10., item 6, for other cases where a read is necessary.

 Interrupt requests (that use INTx#) do not appear as transactions on the PCI bus (they are
sideband signals) and, therefore, have no ordering relationship to any bus transactions.
Furthermore, the system is not required to use the Interrupt Acknowledge bus transaction
to service interrupts. So interrupts are not synchronizing events and device drivers
cannot depend on them to flush posting buffers. However, when MSI are used, they
have the same ordering rules as a memory write transaction (refer to Section 6.8. for
more information).

 3.2.6. Combining, Merging, and Collapsing

 Under certain conditions, bridges that receive (write) data may attempt to convert a
transaction (with a single or multiple data phases) into a larger transaction to optimize
the data transfer on PCI. The terms used when describing the action are: combining,
merging, and collapsing. Each term will be defined and the usage for bridges (host, PCI-
to-PCI, or standard expansion bus) will be discussed.

 Combining -- occurs when sequential memory write transactions (single data phase or
burst and independent of active byte enables) are combined into a single PCI bus
transaction (using linear burst ordering).

 The combining of data is not required but is recommended whenever posting of write
data is being done. Combining is permitted only when the implied ordering is not
changed. Implied ordering means that the target sees the data in the same order as the
original master generated it. For example, a write sequence of DWORD 1, 2, and 4 can
be converted into a burst sequence. However, a write of DWORD 4, 3, and 1 cannot be
combined into a burst but must appear on PCI as three separate transactions in the same
order as they occurred originally. Bursts may include data phases that have no byte
enables asserted. For example, the sequence DWORD 1, 2, and 4 could be combined
into a burst in which data phase 1 contains the data and byte enables provided with
DWORD 1. The second data phase of the burst uses data and byte enables provided with
DWORD 2, while data phase 3 asserts no byte enables and provides no meaningful data.
The burst completes with data phase 4 using data and byte enables provided with
DWORD 4.

 If the target is unable to handle multiple data phases for a single transaction, it
terminates the burst transaction with Disconnect with or after each data phase. The
target sees the data in the same order the originating master generated it, whether the
transaction was originally generated as a burst or as a series of single data phase accesses
which were combined into a burst.

 Byte Merging -- occurs when a sequence of individual memory writes (bytes or words)
are merged into a single DWORD.

 The merging of bytes within the same DWORD for 32-bit transfers or QUADWORD
(eight bytes) for 64-bit transfers is not required but is recommended when posting of
write data is done. Byte merging is permitted only when the bytes within a data phase
are in a prefetchable address range. While similar to combining in concept, merging can
be done in any order (within the same data phase) as long as each byte is only written
once. For example, in a sequence where bytes 3, 1, 0, and 2 are written to the same
DWORD address, the bridge could merge them into a single data phase memory write on
PCI with Byte Enable 0, 1, 2, and 3 all asserted instead of four individual write

Revision 2.3

45

transactions. However, if the sequence written to the same DWORD address were
byte 1, and byte 1 again (with the same or different data), byte 2, and byte 3, the bridge
cannot merge the first two writes into a single data phase because the same byte location
must be written twice. However, the last three transactions could be merged into a
single data phase with Byte Enable 0 being deasserted and Byte Enable 1, 2, and 3 being
asserted. Merging can never be done to a range of I/O or Memory Mapped I/O addresses
(not prefetchable).

 Note: Merging and combining can be done independently of each other. Bytes within a
DWORD may be merged and merged DWORDs can be combined with other DWORDs
when conditions allow. A device can implement only byte merging, only combining,
both byte merging and combining, or neither byte merging or combining.

 Collapsing -- is when a sequence of memory writes to the same location (byte, word, or
DWORD address) are collapsed into a single bus transaction.

 Collapsing is not permitted by PCI bridges (host, PCI-to-PCI, or standard expansion)
except as noted below. For example, a memory write transaction with Byte Enable 3
asserted to DWORD address X, followed by a memory write access to the same address
(X) as a byte, word, or DWORD, or any other combination of bytes allowed by PCI
where Byte Enable 3 is asserted, cannot be merged into a single PCI transaction. These
two accesses must appear on PCI as two separate and distinct transactions.

 Note: The combining and merging of I/O and Configuration transactions are not
allowed. The collapsing of data of any type of transaction (Configuration, Memory, or
I/O) is never allowed (except where noted below).

 Note: If a device cannot tolerate memory write combining, it has been designed
incorrectly. If a device cannot tolerate memory write byte merging, it must mark itself
as not prefetchable. (Refer to Section 6.2.5.1. for a description of prefetchable.) A
device that marks itself prefetchable must tolerate combining (without reordering) and
byte merging (without collapsing) of writes as described previously. A device is
explicitly not required to tolerate reordering of DWORDs or collapsing of data. A
prefetchable address range may have write side effects, but it may not have read side
effects. A bridge (host bus, PCI-to-PCI, or standard expansion bus) cannot reorder
DWORDs in any space, even in a prefetchable space.

 Bridges may optionally allow data to be collapsed in a specific address range when a
device driver indicates that there are no adverse side-effects due to collapsing. How a
device driver indicates this to the system is beyond the scope of this specification.

Revision 2.3

46

 Implementation Note: Combining, Merging, and Collapsing

 Bridges that post memory write data should consider implementing Combining and Byte
Merging. The collapsing of multiple memory write transactions into a single PCI bus
transaction is never allowed (except as noted above). The combining of sequential
DWORD memory writes into a PCI burst has significant performance benefits. For
example, a processor is doing a large number of DWORD writes to a frame buffer.
When the host bus bridge combines these accesses into a single PCI transaction, the PCI
bus can keep up with a host bus that is running faster and/or wider than PCI.

 The merging of bytes within a single DWORD provides a performance improvement but
not as significant as combining. However, for unaligned multi-byte data transfers
merging allows the host bridge to merge misaligned data into single DWORD memory
write transactions. This reduces (at a minimum) the number of PCI transactions by a
factor of two. When the bridge merges bytes into a DWORD and then combines
DWORDs into a burst, the number of transactions on PCI can be reduced even further
than just by merging. With the addition of combining sequential DWORDs, the number
of transactions on PCI can be reduced even further. Merging data (DWORDs) within a
single cacheline appears to have minimal performance gains.

 3.3. Bus Transactions
 The timing diagrams in this section show the relationship of significant signals involved
in 32-bit transactions. When a signal is drawn as a solid line, it is actively being driven
by the current master or target. When a signal is drawn as a dashed line, no agent is
actively driving it. However, it may still be assumed to contain a stable value if the
dashed line is at the high rail. Tri-stated signals are indicated to have indeterminate
values when the dashed line is between the two rails (e.g., AD or C/BE# lines). When a
solid line becomes a dotted line, it indicates the signal was actively driven and now is tri-
stated. When a solid line makes a low to high transition and then becomes a dotted line,
it indicates the signal was actively driven high to precharge the bus and then tri-stated.
The cycles before and after each transaction will be discussed in Section 3.4.

Revision 2.3

47

 3.3.1. Read Transaction

 Figure 3-5 illustrates a read transaction and starts with an address phase which occurs
when FRAME# is asserted for the first time and occurs on clock 2. During the address
phase, AD[31::00] contain a valid address and C/BE[3::0]# contain a valid bus
command.

FRAME#

CLK

TRDY#

IRDY#

AD

DEVSEL#

C/BE#

ADDRESS

BUS CMD

DATA-1 DATA-2 DATA-3

BE#'s

1 2 3 4 5 6 7 8 9

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

 W
A

IT

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

 W
A

IT

DATA
PHASE

 W
A

IT

BUS TRANSACTION

 Figure 3-5: Basic Read Operation

 The first clock of the first data phase is clock 3. During the data phase, C/BE# indicate
which byte lanes are involved in the current data phase. A data phase may consist of
wait cycles and a data transfer. The C/BE# output buffers must remain enabled (for
both read and writes) from the first clock of the data phase through the end of the
transaction. This ensures C/BE# are not left floating for long intervals. The C/BE#
lines contain valid byte enable information during the entire data phase independent of
the state of IRDY#. The C/BE# lines contain the byte enable information for data phase
N+1 on the clock following the completion of the data phase N. This is not shown in
Figure 3-5 because a burst read transaction typically has all byte enables asserted;
however, it is shown in Figure 3-6. Notice on clock 5 in Figure 3-6, the master inserted
a wait state by deasserting IRDY#. However, the byte enables for data phase 3 are valid
on clock 5 and remain valid until the data phase completes on clock 8.

 The first data phase on a read transaction requires a turnaround-cycle (enforced by the
target via TRDY#). In this case, the address is valid on clock 2 and then the master
stops driving AD. The earliest the target can provide valid data is clock 4. The target
must drive the AD lines following the turnaround cycle when DEVSEL# is asserted.
Once enabled, the output buffers must stay enabled through the end of the transaction.
(This ensures that the AD lines are not left floating for long intervals.)

 One way for a data phase to complete is when data is transferred, which occurs when
both IRDY# and TRDY# are asserted on the same rising clock edge. There are other
conditions that complete a data phase and these are discussed in Section 3.3.3.2.

Revision 2.3

48

(TRDY# cannot be driven until DEVSEL# is asserted.) When either IRDY# or TRDY#
is deasserted, a wait cycle is inserted and no data is transferred. As noted in Figure 3-5,
data is successfully transferred on clocks 4, 6, and 8 and wait cycles are inserted on
clocks 3, 5, and 7. The first data phase completes in the minimum time for a read
transaction. The second data phase is extended on clock 5 because TRDY# is
deasserted. The last data phase is extended because IRDY# was deasserted on clock 7.

 The master knows at clock 7 that the next data phase is the last. However, because the
master is not ready to complete the last transfer (IRDY# is deasserted on clock 7),
FRAME# stays asserted. Only when IRDY# is asserted can FRAME# be deasserted as
occurs on clock 8, indicating to the target that this is the last data phase of the
transaction.

 3.3.2. Write Transaction

 Figure 3-6 illustrates a write transaction. The transaction starts when FRAME# is
asserted for the first time which occurs on clock 2. A write transaction is similar to a
read transaction except no turnaround cycle is required following the address phase
because the master provides both address and data. Data phases work the same for both
read and write transactions.

FRAME#

CLK

TRDY#

IRDY#

AD

DEVSEL#

C/BE#

ADDRESS

BUS CMD

DATA-3

1 2 3 4 5 6 7 8 9

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

 W
A

IT

 W
A

IT

DATA-1 DATA-2

 W
A

IT

D
A

T
A

 T
R

A
N

S
F

E
R

DATA
PHASE

BE#'s-1 BE#'s-3BE#'s-2

BUS TRANSACTION

 Figure 3-6: Basic Write Operation

 In Figure 3-6, the first and second data phases complete with zero wait cycles. However,
the third data phase has three wait cycles inserted by the target. Notice both agents
insert a wait cycle on clock 5. IRDY# must be asserted when FRAME# is deasserted
indicating the last data phase.

 The data transfer was delayed by the master on clock 5 because IRDY# was deasserted.
The last data phase is signaled by the master on clock 6, but it does not complete until
clock 8.

Revision 2.3

49

 Note: Although this allowed the master to delay data, it did not allow the byte enables to
be delayed.

 3.3.3. Transaction Termination

 Termination of a PCI transaction may be initiated by either the master or the target.
While neither can actually stop the transaction unilaterally, the master remains in
ultimate control, bringing all transactions to an orderly and systematic conclusion
regardless of what caused the termination. All transactions are concluded when
FRAME# and IRDY# are both deasserted, indicating an Idle state (e.g., clock 9 in
Figure 3-6).

 3.3.3.1. Master Initiated Termination

 The mechanism used in master initiated termination is when FRAME# is deasserted and
IRDY# is asserted. This condition signals the target that the final data phase is in
progress. The final data transfer occurs when both IRDY# and TRDY# are asserted.
The transaction reaches completion when both FRAME# and IRDY# are deasserted
(Idle state).

 The master may initiate termination using this mechanism for one of two reasons:

 Completion refers to termination when the master has concluded its intended
transaction. This is the most common reason for termination.

 Timeout refers to termination when the master's GNT# line is deasserted and
its internal Latency Timer has expired. The intended transaction is
not necessarily concluded. The timer may have expired because of
target-induced access latency or because the intended operation was
very long. Refer to Section 3.5.4. for a description of the Latency
Timer operation.

 A Memory Write and Invalidate transaction is not governed by the
Latency Timer except at cacheline boundaries. A master that initiates
a transaction with the Memory Write and Invalidate command ignores
the Latency Timer until a cacheline boundary. When the transaction
reaches a cacheline boundary and the Latency Timer has expired (and
GNT# is deasserted), the master must terminate the transaction.

 A modified version of this termination mechanism allows the master to terminate the
transaction when no target responds. This abnormal termination is referred to as Master-
Abort. Although it may cause a fatal error for the application originally requesting the
transaction, the transaction completes gracefully, thus preserving normal PCI operation
for other agents.

 Two examples of normal completion are shown in Figure 3-7. The final data phase is
indicated by the deassertion of FRAME# and the assertion of IRDY#. The final data
phase completes when FRAME# is deasserted and IRDY# and TRDY# are both
asserted. The bus reaches an Idle state when IRDY# is deasserted, which occurs on
clock 4. Because the transaction has completed, TRDY# is deasserted on clock 4 also.
Note: TRDY# is not required to be asserted on clock 3, but could have delayed the final
data transfer (and transaction termination) until it is ready by delaying the final assertion

Revision 2.3

50

of TRDY#. If the target does that, the master is required to keep IRDY# asserted until
the final data transfer occurs.

CLK

TRDY#

IRDY#

1 2 3 4 1 2 3 4

T/O

T/O

FRAME#

GNT#

 Figure 3-7: Master Initiated Termination

 Both sides of Figure 3-7 could have been caused by a timeout termination. On the left
side, FRAME# is deasserted on clock 3 because the timer expires, GNT# is deasserted,
and the master is ready (IRDY# asserted) for the final transfer. Because GNT# was
deasserted when the timer expired, continued use of the bus is not allowed except when
using the Memory Write and Invalidate command (refer to Section 3.5.4.), which must
be stopped at the cacheline boundary. Termination then proceeds as normal. If TRDY#
is deasserted on clock 2, that data phase continues until TRDY# is asserted. FRAME#
must remain deasserted and IRDY# must remain asserted until the data phase completes.

 The right-hand example shows a timer expiring on clock 1. Because the master is not
ready to transfer data (IRDY# is deasserted on clock 2), FRAME# is required to stay
asserted. FRAME# is deasserted on clock 3 because the master is ready (IRDY# is
asserted) to complete the transaction on clock 3. The master must be driving valid data
(write) or be capable of receiving data (read) whenever IRDY# is asserted. This delay in
termination should not be extended more than two or three clocks. Also note that the
transaction need not be terminated after timer expiration unless GNT# is deasserted.

 Master-Abort termination, as shown in Figure 3-8, is an abnormal case (except for
configuration or Special Cycle commands) of master initiated termination. A master
determines that there will be no response to a transaction if DEVSEL# remains
deasserted on clock 6. (For a complete description of DEVSEL# operation, refer to
Section 3.6.1.) The master must assume that the target of the access is incapable of
dealing with the requested transaction or that the address was bad and must not repeat
the transaction. Once the master has detected the missing DEVSEL# (clock 6 in this
example), FRAME# is deasserted on clock 7 and IRDY# is deasserted on clock 8. The
earliest a master can terminate a transaction with Master-Abort is five clocks after
FRAME# was first sampled asserted, which occurs when the master attempts a single
data transfer. If a burst is attempted, the transaction is longer than five clocks.
However, the master may take longer to deassert FRAME# and terminate the access.
The master must support the FRAME# -- IRDY# relationship on all transactions
including Master-Abort. FRAME# cannot be deasserted before IRDY# is asserted, and

Revision 2.3

51

IRDY# must remain asserted for at least one clock after FRAME# is deasserted even
when the transaction is terminated with Master-Abort.

 Alternatively, IRDY# could be deasserted on clock 7, if FRAME# was deasserted as in
the case of a transaction with a single data phase. The master will normally not repeat a
transaction terminated with Master-Abort. (Refer to Section 3.7.4.) Note: If DEVSEL#
had been asserted on clocks 3, 4, 5, or 6 of this example, it would indicate the request
had been acknowledged by an agent and Master-Abort termination would not be
permissible.

 The host bus bridge, in PC compatible systems, must return all 1's on a read transaction
and discard data on a write transaction when terminated with Master-Abort. The bridge
is required to set the Master-Abort detected bit in the status register. Other master
devices may report this condition as an error by signaling SERR# when the master
cannot report the error through its device driver. A PCI-to-PCI bridge must support PC
compatibility as described for the host bus bridge. When the PCI-to-PCI bridge is used
in other systems, the bridge behaves like other masters and reports an error. Prefetching
of read data beyond the actual request by a bridge must be totally transparent to the
system. This means that when a prefetched transaction is terminated with Master-Abort,
the bridge must simply stop the transaction and continue normal operation without
reporting an error. This occurs when a transaction is not claimed by a target.

TRDY#

DEVSEL#

IRDY#

CLK

NO RESPONSE

ACKNOWLEDGE
FAST MED SLOW SUB

FRAME#

1 2 3 4 5 6 7 8

 Figure 3-8: Master-Abort Termination

 In summary, the following general rules govern FRAME# and IRDY# in all PCI
transactions:

 1. FRAME# and its corresponding IRDY# define the Busy/Idle state of the bus; when
either is asserted, the bus is Busy; when both are deasserted, the bus is Idle.

 2. Once FRAME# has been deasserted, it cannot be reasserted during the same
transaction.

 3. FRAME# cannot be deasserted unless IRDY# is asserted. (IRDY# must always be
asserted on the first clock edge that FRAME# is deasserted.)

 4. Once a master has asserted IRDY#, it cannot change IRDY# or FRAME# until the
current data phase completes.

 5. The master must deassert IRDY# the clock after the completion of the last data
phase.

Revision 2.3

52

 3.3.3.2. Target Initiated Termination

 Under most conditions, the target is able to source or sink the data requested by the
master until the master terminates the transaction. But when the target is unable to
complete the request, it may use the STOP# signal to initiate termination of the
transaction. How the target combines STOP# with other signals will indicate to the
master something about the condition which lead to the termination.

 The three types of target initiated termination are:

 Retry refers to termination requested before any data is transferred because
the target is busy and temporarily unable to process the transaction.
This condition may occur, for example, because the device cannot
meet the initial latency requirement, is currently locked by another
master, or there is a conflict for a internal resource.

 Retry is a special case of Disconnect without data being transferred on
the initial data phase.

 The target signals Retry by asserting STOP# and not asserting
TRDY# on the initial data phase of the transaction (STOP# cannot be
asserted during the turn-around cycle between the address phase and
first data phase of a read transaction). When the target uses Retry, no
data is transferred.

 Disconnect refers to termination requested with or after data was transferred on
the initial data phase because the target is unable to respond within the
target subsequent latency requirement and, therefore, is temporarily
unable to continue bursting. This might be because the burst crosses a
resource boundary or a resource conflict occurs. Data may or may not
transfer on the data phase where Disconnect is signaled. Notice that
Disconnect differs from Retry in that Retry is always on the initial
data phase, and no data transfers. If data is transferred with or before
the target terminates the transaction, it is a Disconnect. This may also
occur on the initial data phase because the target is not capable of
doing a burst.

 Disconnect with data may be signaled on any data phase by asserting
TRDY# and STOP# together. This termination is used when the
target is only willing to complete the current data phase and no more.

 Disconnect without data may be signaled on any subsequent data
phase (meaning data was transferred on the previous data phase) by
deasserting TRDY# and asserting STOP#.

Revision 2.3

53

 Target-Abort refers to an abnormal termination requested because the target
detected a fatal error or the target will never be able to complete the
request. Although it may cause a fatal error for the application
originally requesting the transaction, the transaction completes
gracefully, thus, preserving normal operation for other agents. For
example, a master requests all bytes in an I/O Address Space
DWORD to be read, but the target design restricts access to a single
byte in this range. Since the target cannot complete the request, the
target terminates the request with Target-Abort.

 Once the target has claimed an access by asserting DEVSEL#, it can
signal Target-Abort on any subsequent clock. The target signals
Target-Abort by deasserting DEVSEL# and asserting STOP# at the
same time.

 Most targets will be required to implement at least Retry capability, but any other
versions of target initiated termination are optional for targets. Masters must be capable
of properly dealing with them all. Retry is optional to very simple targets that:

• do not support exclusive (locked) accesses

• do not have a posted memory write buffer which needs to be flushed to meet the PCI
ordering rules

• cannot get into a state where they may need to reject an access

• can always meet target initial latency

 A target is permitted to signal Disconnect with data (assert STOP# and TRDY#) on the
initial data phase even if the master is not bursting; i.e., FRAME# is deasserted.

 3.3.3.2.1. Target Termination Signaling Rules

 The following general rules govern FRAME#, IRDY#, TRDY#, STOP#, and
DEVSEL# while terminating transactions.

 1. A data phase completes on any rising clock edge on which IRDY# is asserted and
either STOP# or TRDY# is asserted.

 2. Independent of the state of STOP#, a data transfer takes place on every rising edge
of clock where both IRDY# and TRDY# are asserted.

 3. Once the target asserts STOP#, it must keep STOP# asserted until FRAME# is
deasserted, whereupon it must deassert STOP#.

 4. Once a target has asserted TRDY# or STOP#, it cannot change DEVSEL#,
TRDY#, or STOP# until the current data phase completes.

 5. Whenever STOP# is asserted, the master must deassert FRAME# as soon as
IRDY# can be asserted.

 6. If not already deasserted, TRDY#, STOP#, and DEVSEL# must be deasserted the
clock following the completion of the last data phase and must be tri-stated the next
clock.

Revision 2.3

54

 Rule 1 means that a data phase can complete with or without TRDY# being asserted.
When a target is unable to complete a data transfer, it can assert STOP# without
asserting TRDY#.

 When both FRAME# and IRDY# are asserted, the master has committed to complete
two data phases. The master is unable to deassert FRAME# until the current data phase
completes because IRDY# is asserted. Because a data phase is allowed to complete
when STOP# and IRDY# are asserted, the master is allowed to start the final data phase
by deasserting FRAME# and keeping IRDY# asserted. The master must deassert
IRDY# the clock after the completion of the last data phase.

 Rule 2 indicates that data transfers regardless of the state of STOP# when both TRDY#
and IRDY# are asserted.

 Rule 3 means that once STOP# is asserted, it must remain asserted until the transaction
is complete. The last data phase of a transaction completes when FRAME# is
deasserted, IRDY# is asserted, and STOP# (or TRDY#) is asserted. The target must not
assume any timing relationship between the assertion of STOP# and the deassertion of
FRAME#, but must keep STOP# asserted until FRAME# is deasserted and IRDY# is
asserted (the last data phase completes). STOP# must be deasserted on the clock
following the completion of the last data phase.

 When both STOP# and TRDY# are asserted in the same data phase, the target will
transfer data in that data phase. In this case, TRDY# must be deasserted when the data
phase completes. As before, STOP# must remain asserted until the transaction ends
whereupon it is deasserted.

 If the target requires wait states in the data phase where it asserts STOP#, it must delay
the assertion of STOP# until it is ready to complete the data phase.

 Rule 4 means the target is not allowed to change its mind once it has committed to
complete the current data phase. Committing to complete a data phase occurs when the
target asserts either TRDY# or STOP#. The target commits to:

 • Transfer data in the current data phase and continue the transaction (if a burst) by
asserting TRDY# and not asserting STOP#

 • Transfer data in the current data phase and terminate the transaction by asserting
both TRDY# and STOP#

 • Not transfer data in the current data phase and terminate the transaction by asserting
STOP# and deasserting TRDY#

 • Not transfer data in the current data phase and terminate the transaction with an error
condition (Target-Abort) by asserting STOP# and deasserting TRDY# and
DEVSEL#

 The target has not committed to complete the current data phase while TRDY# and
STOP# are both deasserted. The target is simply inserting wait states.

 Rule 5 means that when the master samples STOP# asserted, it must deassert FRAME#
on the first cycle thereafter in which IRDY# is asserted. The assertion of IRDY# and
deassertion of FRAME# should occur as soon as possible after STOP# is asserted,
preferably within one to three cycles. This assertion of IRDY# (and therefore FRAME#
deassertion) may occur as a consequence of the normal IRDY# behavior of the master
had the current transaction not been target terminated. Alternatively, if TRDY# is
deasserted (indicating there will be no further data transfer), the master may assert
IRDY# immediately (even without being prepared to complete a data transfer). If a

Revision 2.3

55

Memory Write and Invalidate transaction is terminated by the target, the master
completes the transaction (the rest of the cacheline) as soon as possible (adhering to the
STOP# protocol) using the Memory Write command (since the conditions to issue
Memory Write and Invalidate are no longer true).

 Rule 6 requires the target to release control of the target signals in the same manner it
would if the transaction had completed using master termination. Retry and Disconnect
are normal termination conditions on the bus. Only Target-Abort is an abnormal
termination that may have caused an error. Because the reporting of errors is optional,
the bus must continue operating as though the error never occurred.

 Examples of Target Termination

 Retry

 Figure 3-9 shows a transaction being terminated with Retry. The transaction starts with
FRAME# asserted on clock 2 and IRDY# asserted on clock 3. The master requests
multiple data phases because both FRAME# and IRDY# are asserted on clock 3. The
target claims the transaction by asserting DEVSEL# on clock 4.

 The target determines it cannot complete the master’s request and also asserts STOP#
on clock 4 while keeping TRDY# deasserted. The first data phase completes on clock 4
because both IRDY# and STOP# are asserted. Since TRDY# was deasserted, no data
was transferred during the initial data phase. Because STOP# was asserted and TRDY#
was deasserted on clock 4, the master knows the target is unwilling to transfer any data
for this transaction at the present time. The master is required to deassert FRAME# as
soon as IRDY# can be asserted. In this case, FRAME# is deasserted on clock 5 because
IRDY# is asserted on clock 5. The last data phase completes on clock 5 because
FRAME# is deasserted and STOP# is asserted. The target deasserts STOP# and
DEVSEL# on clock 6 because the transaction is complete. This transaction consisted of
two data phases in which no data was transferred and the master is required to repeat the
request again.

OM04047

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5 6

 Figure 3-9: Retry

Revision 2.3

56

 Disconnect With Data

 Disconnect - A, in Figure 3-10, is where the master is inserting a wait state when the
target signals Disconnect with data. This transaction starts prior to clock 1. The current
data phase, which could be the initial or a subsequent data phase, completes on clock 3.
The master inserts a wait state on clocks 1 and 2, while the target inserts a wait state only
on clock 1. Since the target wants to complete only the current data phase, and no more,
it asserts TRDY# and STOP# at the same time. In this example, the data is transferred
during the last data phase. Because the master sampled STOP# asserted on clock 2,
FRAME# is deasserted on clock 3 and the master is ready to complete the data phase
(IRDY# is asserted). Since FRAME# is deasserted on clock 3, the last data phase
completes because STOP# is asserted and data transfers because both IRDY# and
TRDY# are asserted. Notice that STOP# remains asserted for both clocks 2 and 3. The
target is required to keep STOP# asserted until FRAME# is deasserted.

 Disconnect - B, in Figure 3-10, is almost the same as Disconnect - A, but TRDY# is not
asserted in the last data phase. In this example, data was transferred on clocks 1 and 2
but not during the last data phase. The target indicates that it cannot continue the burst
by asserting both STOP# and TRDY# together. When the data phase completes on
clock 2, the target is required to deassert TRDY# and keep STOP# asserted. The last
data phase completes, without transferring data, on clock 3 because TRDY# is
deasserted and STOP# is asserted. In this example, there are three data phases, two that
transfer data and one that does not.

STOP#

TRDY#

DEVSEL#

FRAME#

IRDY#

CLK

Disconnect - A Disconnect - B

1 2 3 4 1 2 3 4

 Figure 3-10: Disconnect With Data

Revision 2.3

57

 Figure 3-11 is an example of Master Completion termination where the target blindly
asserts STOP#. This is a legal termination where the master is requesting a transaction
with a single data phase and the target blindly asserts STOP# and TRDY# indicating it
can complete only a single data phase. The transaction starts like all transactions with
the assertion of FRAME#. The master indicates that the initial data phase is the final
data phase because FRAME# is deasserted and IRDY# is asserted on clock 3. The
target claims the transaction, indicates it is ready to transfer data, and requests the
transaction to stop by asserting DEVSEL#, TRDY#, and STOP# all at the same time.

OM04046

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5

 Figure 3-11: Master Completion Termination

 Disconnect Without Data

 Figure 3-12 shows a transaction being terminated with Disconnect without data. The
transaction starts with FRAME# being asserted on clock 2 and IRDY# being asserted on
clock 3. The master is requesting multiple data phases because both FRAME# and
IRDY# are asserted on clock 3. The target claims the transaction by asserting
DEVSEL# on clock 4.

 The first data phase completes on clock 4 and the second completes on clock 5. On
clock 6, the master wants to continue bursting because FRAME# and IRDY# are still
asserted. However, the target cannot complete any more data phases and asserts STOP#
and deasserts TRDY# on clock 6. Since IRDY# and STOP# are asserted on clock 6, the
third data phase completes. The target continues to keep STOP# asserted on clock 7
because FRAME# is still asserted on clock 6. The fourth and final data phase completes
on clock 7 since FRAME# is deasserted (IRDY# is asserted) and STOP# is asserted on
clock 7. The bus returns to the Idle state on clock 8.

 In this example, the first two data phases complete transferring data while the last two do
not. This might happen if a device accepted two DWORDs of data and then determined
that its buffers were full or if the burst crossed a resource boundary. The target is able to
complete the first two data phases but cannot complete the third. When and if the master
continues the burst, the device that owns the address of the next untransferred data will
claim the access and continue the burst.

Revision 2.3

58

OM04045

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5 6 7 8

DATA
PHASE

DATA PHASE

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

DATA
PHASE

DATA
PHASE

 Figure 3-12: Disconnect-1 Without Data Termination

 Figure 3-13 shows the same transaction as described in Figure 3-12 except that the
master inserts a wait state on clock 6. Since FRAME# was not deasserted on clock 5,
the master committed to at least one more data phase and must complete it. The master
is not allowed simply to transition the bus to the Idle state by deasserting FRAME# and
keeping IRDY# deasserted. This would be a violation of bus protocol. When the master
is ready to assert IRDY#, it deasserts FRAME# indicating the last data phase, which
completes on clock 7 since STOP# is asserted. This example only consists of three data
phases while the previous had four. The fact that the master inserted a wait state allowed
the master to complete the transaction with the third data phase. However, from a clock
count, the two transactions are the same.

OM04044

FRAME#

CLK

TRDY#

IRDY#

DEVSEL#

STOP#

1 2 3 4 5 6 7 8

DATA
PHASE

DATA PHASE DATA PHASE

D
A

T
A

 T
R

A
N

S
F

E
R

D
A

T
A

 T
R

A
N

S
F

E
R

 Figure 3-13: Disconnect-2 Without Data Termination

Revision 2.3

59

 Target-Abort

 Figure 3-14 shows a transaction being terminated with Target-Abort. Target-Abort
indicates the target requires the transaction to be stopped and does not want the master to
repeat the request again. Sometime prior to clock 1, the master asserted FRAME# to
initiate the request and the target claimed the access by asserting DEVSEL#. Data
phases may or may not have completed prior to clock 1. The target determines that the
master has requested a transaction that the target is incapable of completing or has
determined that a fatal error has occurred. Before the target can signal Target-Abort,
DEVSEL# must be asserted for one or more clocks. To signal Target-Abort, TRDY#
must be deasserted when DEVSEL# is deasserted and STOP# is asserted, which occurs
on clock 2. If any data was transferred during the previous data phases of the current
transaction, it may have been corrupted. Because STOP# is asserted on clock 2 and the
master can assert IRDY# on clock 3, the master deasserts FRAME# on clock 3. The
transaction completes on clock 3 because IRDY# and STOP# are asserted. The master
deasserts IRDY# and the target deasserts STOP# on clock 4.

STOP#

TRDY#

DEVSEL#

FRAME#

IRDY#

CLK
1 2 3 4

 Figure 3-14: Target-Abort

 3.3.3.2.2. Requirements on a Master Because of Target
Termination

 Although not all targets will implement all forms of target termination, masters must be
capable of properly dealing with them all.

 Deassertion of REQ# When Target Terminated

 When the current transaction is terminated by the target either by Retry or Disconnect
(with or without data), the master must deassert its REQ# signal before repeating the
transaction. A device containing a single source of master activity must deassert REQ#
for a minimum of two clocks, one being when the bus goes to the Idle state (at the end of
the transaction where STOP# was asserted) and either the clock before or the clock after
the Idle state.

Revision 2.3

60

 Some devices contain multiple sources of master activity that share the same REQ# pin.
Examples of such devices include the following:

• A single function device that contains two independent sub-functions. One that
produces data and one that consumes data.

• A multi-function device.

• A PCI-to-PCI bridge that is capable of forwarding multiple Delayed Transactions
from the other bus.

A device containing multiple sources of master activity that share a single REQ# pin is
permitted to allow each source to use the bus (assuming that GNT# is still asserted)
without deasserting REQ# even if one or more sources are target terminated (STOP#
asserted). However, the device must deassert REQ# for two consecutive clocks, one of
which while the bus is Idle, before any transaction that was target terminated can be
repeated.

The master is not required to deassert its REQ# when the target requests the transaction
to end by asserting STOP# in the last data phase. An example is Figure 3-11 which is
really Master Completion termination and not target termination.

Repeat Request Terminated With Retry

A master that is target terminated with Retry must unconditionally repeat the same
request until it completes; however, it is not required to repeat the transaction when
terminated with Disconnect. "Same request" means that the same address (including
AD[1::0]), same command, same byte enables, same write data for write transactions
(even if the byte enable for that byte lane is not asserted), and, if supported, LOCK# and
REQ64# that were used on the original request must be used when the access is
repeated. "Unconditionally" in the above rule means the master must repeat the same
transaction that was terminated with Retry independent of any subsequent events (except
as noted below) until the original transaction is satisfied.

This does not mean the master must immediately repeat the same transaction. In the
simplest form, the master would request use of the bus after the two clocks REQ# was
deasserted and repeat the same transaction. The master is permitted to perform other bus
transactions, but cannot require them to complete before repeating the original
transaction. If the device also implements target functionality, it must be able to accept
accesses during this time as well.

A multi-function device is a good example of how this works. Functions 1, 2, and 3 of a
single device are all requesting use of the interface. Function 1 requests a read
transaction and is terminated with Retry. Once Function 1 has returned the bus to an Idle
state, Function 2 may attempt a transaction (assuming GNT# is still active for the
device). After Function 2 releases the bus, Function 3 may proceed if GNT# is still
active. Once Function 3 completes, the device must deassert its REQ# for the two
clocks before reasserting it. As illustrated above, Function 1 is not required to complete
its transaction before another function can request a transaction. But Function 1 must
repeat its access regardless of how the transactions initiated by Function 2 or 3 are
terminated. The master of a transaction must repeat its transaction unconditionally,
which means the repeat of the transaction cannot be gated by any other event or
condition.

This rule applies to all transactions that are terminated by Retry regardless of how many
previous transactions may have been terminated by Retry. In the example above, if
Function 2 attempted to do a transaction and was terminated by Retry, it must repeat that

Revision 2.3

61

transaction unconditionally just as Function 1 is required to repeat its transaction
unconditionally. Neither Function 1 nor Function 2 can depend on the completion of the
other function's transaction or the success of any transaction attempted by Function 3 to
be able to repeat its original request.

A subsequent transaction (not the original request) could result in the assertion of
SERR#, PERR#, or being terminated with Retry, Disconnect, Target-Abort, or Master-
Abort. Any of these events would have no effect on the requirement that the master
must repeat an access that was terminated with Retry.

A master should repeat a transaction terminated by Retry as soon as possible, preferably
within 33 clocks. However, there are a few conditions when a master is unable to repeat
the request. These conditions typically are caused when an error occurs; for example,
the system asserts RST#, the device driver resets, and then re-initializes the component,
or software disables the master by resetting the Bus Master bit (bit 2 in the Command
register). Refer to Section 3.3.3.3.3. for a description of how a target using Delayed
Transaction termination handles this error condition.

However, when the master repeats the transaction and finally is successful in transferring
data, it is not required to continue the transaction past the first data phase.

Implementation Note: Potential Temporary Deadlock and Resulting
Performance Impacts

The previous paragraph states that a master may perform other bus transactions, but
cannot require them to complete before repeating the original transaction (one previously
target terminated with Retry). If a master does not meet this requirement, it may cause
temporary deadlocks resulting in significant device and system performance impacts.
Devices designed prior to Revision 2.1 of this specification may exhibit this behavior.
Such temporary deadlocks should eventually clear when the discard timer (refer to
Section 3.3.3.3.3.) expires.

3.3.3.3. Delayed Transactions

Delayed Transaction termination is used by targets that cannot complete the initial data
phase within the requirements of this specification. There are two types of devices that
will use Delayed Transactions: I/O controllers and bridges (in particular, PCI-to-PCI
bridges). In general, I/O controllers will handle only a single Delayed Transaction at a
time, while bridges may choose to handle multiple transactions to improve system
performance.

One advantage of a Delayed Transaction is that the bus is not held in wait states while
completing an access to a slow device. While the originating master rearbitrates for the
bus, other bus masters are allowed to use the bus bandwidth that would normally be
wasted holding the master in wait states. Another advantage is that all posted (memory
write) data is not required to be flushed before the request is accepted. The actual
flushing of the posted memory write data occurs before the Delayed Transaction
completes on the originating bus. This allows posting to remain enabled while a non-
postable transaction completes and still maintains the system ordering rules.

The following discussion focuses on the basic operation and requirements of a device
that supports a single Delayed Transaction at a time. Section 3.3.3.3.5. extends the basic
concepts from support of a single Delayed Transaction to the support of multiple
Delayed Transactions at a time.

Revision 2.3

62

3.3.3.3.1. Basic Operation of a Delayed Transaction

All bus commands that must complete on the destination bus before completing on the
originating bus may be completed as a Delayed Transaction. These include Interrupt
Acknowledge, I/O Read, I/O Write, Configuration Read, Configuration Write, Memory
Read, Memory Read Line, and Memory Read Multiple commands. Memory Write and
Memory Write and Invalidate commands can complete on the originating bus before
completing on the destination bus (i.e., can be posted). Each command is not completed
using Delayed Transaction termination and are either posted or terminated with Retry.
For I/O controllers, the term destination bus refers to the internal bus where the resource
addressed by the transaction resides. For a bridge, the destination bus means the
interface that was not acting as the target of the original request. For example, the
secondary bus of a bridge is the destination bus when a transaction originates on the
primary bus of the bridge and targets (addresses) a device attached to the secondary bus
of the bridge. However, a transaction that is moving in the opposite direction would
have the primary bus as the destination bus.

A Delayed Transaction progresses to completion in three steps:

1. Request by the master

2. Completion of the request by the target

3. Completion of the transaction by the master

During the first step, the master generates a transaction on the bus, the target decodes the
access, latches the information required to complete the access, and terminates the
request with Retry. The latched request information is referred to as a Delayed Request.
The master of a request that is terminated with Retry cannot distinguish between a target
which is completing the transaction using Delayed Transaction termination and a target
which simply cannot complete the transaction at the current time. Since the master
cannot tell the difference, it must reissue any request that has been terminated with Retry
until the request completes (refer to Section 3.3.3.2.2.).

During the second step, the target independently completes the request on the destination
bus using the latched information from the Delayed Request. If the Delayed Request is a
read, the target obtains the requested data and completion status. If the Delayed Request
is a write, the target delivers the write data and obtains the completion status. The result
of completing the Delayed Request on the destination bus produces a Delayed
Completion, which consists of the latched information of the Delay Request and the
completion status (and data if a read request). The target stores the Delayed Completion
until the master repeats the initial request.

During the third step, the master successfully rearbitrates for the bus and reissues the
original request. The target decodes the request and gives the master the completion
status (and data if a read request). At this point, the Delayed Completion is retired and
the transaction has completed. The status returned to the master is exactly the same as
the target obtained when it executed (completed) the Delayed Request (i.e., Master-
Abort, Target-Abort, parity error, normal, Disconnect, etc.).

Revision 2.3

63

3.3.3.3.2. Information Required to Complete a Delayed
Transaction

To complete a transaction using Delayed Transaction termination, a target must latch the
following information:

• address

• command

• byte enables

• address and data parity, if the Parity Error Response bit (bit 6 of the command
register) is set

• REQ64# (if a 64-bit transfer)

 For write transactions completed using Delayed Transaction termination, a target must
also latch data from byte lanes for which the byte enable is asserted and may optionally
latch data from byte lanes for which the byte enable is deasserted. Refer to Appendix F
for requirements for a bridge to latch LOCK# when completing a Delayed Transaction.

 On a read transaction, the address and command are available during the address phase
and the byte enables during the following clock. Byte enables for both read and write
transactions are valid the entire data phase and are independent of IRDY#. On a write
transaction, all information is valid at the same time as a read transaction, except for the
actual data, which is valid only when IRDY# is asserted.

 Note: Write data is only valid when IRDY# is asserted. Byte enables are always
valid for the entire data phase regardless of the state of IRDY#.

 The target differentiates between transactions (by the same or different masters) by
comparing the current transaction with information latched previously (for both Delayed
Request(s) and Delayed Completion(s)). During a read transaction, the target is not
required to use byte enables as part of the comparison, if all bytes are returned
independent of the asserted byte enables and the accessed location has no read side-
effects (pre-fetchable). If the compare matches a Delayed Request (already enqueued),
the target does not enqueue the request again but simply terminates the transaction with
Retry indicating that the target is not yet ready to complete the request. If the compare
matches a Delayed Completion, the target responds by signaling the status and providing
the data if a read transaction.

 The master must repeat the transaction exactly as the original request, including write
data in all byte lanes (whether the corresponding byte enables are asserted or not).
Otherwise, the target will assume it is a new transaction. If the original transaction is
never repeated, it will eventually be discarded when the Discard Timer expires (refer to
Section 3.3.3.3.3.). Two masters could request the exact same transaction and the target
cannot and need not distinguish between them and will simply complete the access.

 Special requirements apply if a data parity error occurs while initiating or completing a
Delayed Transaction. Refer to Section 3.7.5. for details about a parity error and Delayed
Transactions.

Revision 2.3

64

 3.3.3.3.3. Discarding a Delayed Transaction

 A device is allowed to discard a Delayed Request from the time it is enqueued until it
has been attempted on the destination bus, since the master is required to repeat the
request until it completes. Once a Request has been attempted on the destination bus, it
must continue to be repeated until it completes on the destination bus and cannot be
discarded. The master is allowed to present other requests. But if it attempts more than
one request, the master must continue to repeat all requests that have been attempted
unconditionally until they complete. The repeating of the requests is not required to be
equal, but is required to be fair.

 When a Delayed Request completes on the destination bus, it becomes a Delayed
Completion. The target device is allowed to discard Delayed Completions in only two
cases. The first case is when the Delayed Completion is a read to a pre-fetchable region
(or the command was Memory Read Line or Memory Read Multiple). The second case
is for all Delayed Completions (read or write, pre-fetchable or not) when the master has
not repeated the request within 215 clocks. When this timer (referred to as the Discard
Timer) expires, the device is required to discard the data; otherwise, a deadlock may
occur.

 Note: When the transaction is discarded, data may be destroyed. This occurs when the
discarded Delayed Completion is a read to a non-prefetchable region.

 If the Discard Timer expires, the device may choose to report an error or not. If the data
is prefetchable (case 1), it is recommended that the device not report an error, since
system integrity is not effected. However, if the data on a read access is not prefetchable
(case 2), it is recommended that the device report the error to its device driver since
system integrity is affected.

 3.3.3.3.4. Memory Writes and Delayed Transactions

 While completing a Delayed Request, the target is also required to complete all memory
write transactions addressed to it. The target may, from time to time, retry a memory
write while temporary internal conflicts are being resolved; for example, when all the
memory-write data buffers are full, or before the Delayed Request has completed on the
destination bus (but is guaranteed to complete). However, the target cannot require the
Delayed Transaction to complete on the originating bus before accepting the memory
write data; otherwise, a deadlock may occur. Refer to Section 3.10., item 6, for
additional information. The following implementation note describes the deadlock.

Revision 2.3

65

 Implementation Note: Deadlock When Memory Write Data is Not
Accepted

 The deadlock occurs when the master and the target of a transaction reside on different
buses (or segments). The PCI-to-PCI bridge18 that connects the two buses together does
not implement Delayed Transactions. The master initiates a request that is forwarded to
the target by the bridge. The target responds to the request by using Delayed
Transaction termination (terminated with Retry). The bridge terminates the master’s
request with Retry (without latching the request). Another master (on the same bus
segment as the original master) posts write data into the bridge targeted at the same
device as the read request. Because it is designed to the previous version of this
specification, before Delayed Transactions, the bridge is required to flush the memory
write data before the read can be repeated. If the target that uses Delayed Transaction
termination will not accept the memory write data until the master repeats the initial
read, a deadlock occurs because the bridge cannot repeat the request until the target
accepts the write data. To prevent this from occurring, the target that uses the Delayed
Transaction termination to meet the initial latency requirements is required to accept
memory write data even though the Delayed Transaction has not completed.

 3.3.3.3.5. Supporting Multiple Delayed Transactions

 This section takes the basic concepts of a single Delayed Transaction as described in the
previous section and extends them to support multiple Delayed Transactions at the same
time. Bridges (in particular, PCI-to-PCI bridges) are the most likely candidates to
handle multiple Delayed Transactions as a way to improve system performance and meet
the initial latency requirements. To assist in understanding the requirements of
supporting multiple Delayed Transactions, the following section focuses on a PCI-to-PCI
bridge. This focus allows the same terminology to be used when describing transactions
initiated on either interface of the bridge. Most other bridges (host bus bridge and
standard expansion bus bridge) will typically handle only a single Delayed Transaction.
Supporting multiple transactions is possible but the details may vary. The fundamental
requirements in all cases are that transaction ordering be maintained as described in
Section 3.2.5. and Section 3.3.3.3.4. and deadlocks will be avoided.

 Transaction Definitions

 PMW - Posted Memory Write is a transaction that has completed on the originating bus
before completing on the destination bus and can only occur for Memory Write and
Memory Write and Invalidate commands.

 DRR - Delayed Read Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be an Interrupt Acknowledge, I/O
Read, Configuration Read, Memory Read, Memory Read Line, or Memory Read
Multiple command. As mentioned earlier, once a request has been attempted on the
destination bus, it must continue to be repeated until it completes on the destination bus.
Until that time, the DRR is only a request and may be discarded at any time to prevent
deadlock or improve performance, since the master must repeat the request later.

 DWR - Delayed Write Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be an I/O Write or Configuration Write

 18 This is a bridge that is built to an earlier version of this specification.

Revision 2.3

66

command. Note: Memory Write and Memory Write and Invalidate commands must be
posted (PMW) and not be completed as DWR. As mentioned earlier, once a request has
been attempted on the destination bus, it must continue to be repeated until it completes.
Until that time, the DWR is only a request and may be discarded at any time to prevent
deadlock or improve performance, since the master must repeat the request later.

 DRC - Delayed Read Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus to complete. The DRC contains the
data requested by the master and the status of the target (normal, Master-Abort, Target-
Abort, parity error, etc.).

 DWC - Delayed Write Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus. The DWC does not contain the data
of the access but only status of how it completed (normal, Master-Abort, Target-Abort,
parity error, etc.). The write data has been written to the specified target.

 Ordering Rules for Multiple Delayed Transactions

 Table 3-3 represents the ordering rules when a bridge in the system is capable of
allowing multiple transactions to proceed in each direction at the same time. The
number of simultaneous transactions is limited by the implementation and not by the
architecture. Because there are five types of transactions that can be handled in each
direction, the following table has 25 entries. Of the 25 boxes in the table, only four are
required No’s, eight are required Yes’s, and the remaining 13 are don’t cares. The
column of the table represents an access that was accepted previously by the bridge,
while the row represents a transaction that was accepted subsequent to the access
represented by the column. The following table specifies the ordering relationships
between transactions as they cross a bridge. For an explanation as to why these rules are
required or for a general discussion on system ordering rules, refer to Appendix E for
details.

 Table 3-3: Ordering Rules for Multiple Delayed Transactions

 Row pass
Col.?

 PMW (Col 2) DRR (Col 3) DWR (Col 4) DRC (Col 5) DWC (Col 6)

 PMW (Row 1) No Yes Yes Yes Yes
 DRR (Row 2) No Yes/No Yes/No Yes/No Yes/No
 DWR (Row 3) No Yes/No Yes/No Yes/No Yes/No
 DRC (Row 4) No Yes Yes Yes/No Yes/No
 DWC (Row 5) Yes/No Yes Yes Yes/No Yes/No

 No - indicates the subsequent transaction is not allowed to complete before the previous
transaction to preserve ordering in the system. The four No boxes are found in column 2
and maintain a consistent view of data in the system as described by the Producer -
Consumer Model found in Appendix E. These boxes prevent PMW data from being
passed by other accesses.

 Yes - The four Yes boxes in Row 1 indicate the PMW must be allowed to complete
before Delayed Requests or Delayed Completions moving in the same direction or a
deadlock can occur. This prevents deadlocks from occurring when Delayed Transactions
are used with devices designed to an earlier version of this specification. A PMW
cannot be delayed from completing because a Delayed Request or a Delayed Completion
was accepted prior to the PMW. The only thing that can prevent the PMW from
completing is gaining access to the bus or the target terminating the attempt with Retry.
Both conditions are temporary and will resolve independently of other events. If the

Revision 2.3

67

master continues attempting to complete Delayed Requests, it must be fair in attempting
to complete the PMW. There is no ordering violation when a subsequent transaction
completes before a prior transaction.

 The four Yes boxes in rows 4 and 5, columns 3 and 4, indicate that Delayed Completions
must be allowed to pass Delayed Requests moving in the same direction. This prevents
deadlocks from occurring when two bridges that support Delayed Transactions are
requesting accesses to each other. If neither bridge allows Delayed Completions to pass
the Delayed Requests, neither can make progress.

 Yes/No - indicates the bridge may choose to allow the subsequent transaction to
complete before the previous transaction or not. This is allowed since there are no
ordering requirements to meet or deadlocks to avoid. How a bridge designer chooses to
implement these boxes may have a cost impact on the bridge implementation or
performance impact on the system.

 Ordering of Delayed Transactions

 The ordering of Delayed Transactions is established when the transaction completes on
the originating bus (i.e., the requesting master receives a response other than Retry).
Delayed Requests and Delayed Completions are intermediate steps in the process of
completing a Delayed Transaction, which occur prior to the completion of the
transaction on the originating bus. As a result, reordering is allowed for Delayed
Requests with respect to other Delayed Requests, Delayed Requests with respect to
Delayed Completions, or for Delayed Completions with respect to other Delayed
Completions. However, reordering is not allowed with respect to memory write
transactions, which is described in Table 3-3 (the No boxes).

 In general, a master does not need to wait for one request to be completed before it
issues another request. As described in Section 3.3.3.2.2., a master may have any
number of requests terminated with Retry at one time, some of which may be serviced as
Delayed Transactions and some not. However, if the master does issue a second request
before the first is completed, the master must continue to repeat each of the requests
fairly, so that each has a fair opportunity to be completed. If a master has a specific need
for two transactions to be completed in a particular order, it must wait for the first one to
complete before requesting the second.

Revision 2.3

68

 3.4. Arbitration
 In order to minimize access latency, the PCI arbitration approach is access-based rather
than time-slot-based. That is, a bus master must arbitrate for each access it performs on
the bus. PCI uses a central arbitration scheme, where each master agent has a unique
request (REQ#) and grant (GNT#) signal. A simple request-grant handshake is used to
gain access to the bus. Arbitration is "hidden," which means it occurs during the
previous access so that no PCI bus cycles are consumed due to arbitration, except when
the bus is in an Idle state.

 An arbitration algorithm must be defined to establish a basis for a worst case latency
guarantee. However, since the arbitration algorithm is fundamentally not part of the bus
specification, system designers may elect to modify it, but must provide for the latency
requirements of their selected I/O controllers and for add-in cards. Refer to
Section 3.5.4. for information on latency guidelines. The bus allows back-to-back
transactions by the same agent and allows flexibility for the arbiter to prioritize and
weight requests. An arbiter can implement any scheme as long as it is fair and only a
single GNT# is asserted on any rising clock.

 The arbiter is required to implement a fairness algorithm to avoid deadlocks. In general,
the arbiter must advance to a new agent when the current master deasserts its REQ#.
Fairness means that each potential master must be granted access to the bus independent
of other requests. However, this does not mean that all agents are required to have equal
access to the bus. By requiring a fairness algorithm, there are no special conditions to
handle when LOCK# is active (assuming a resource lock). A system that uses a fairness
algorithm is still considered fair if it implements a complete bus lock instead of resource
lock. However, the arbiter must advance to a new agent if the initial transaction
attempting to establish the lock is terminated with Retry.

Revision 2.3

69

 Implementation Note: System Arbitration Algorithm

 One example of building an arbiter to implement a fairness algorithm is when there are two levels
to which bus masters are assigned. In this example, the agents that are assigned to the first level
have a greater need to use the bus than agents assigned to the second level (i.e., lower latency or
greater throughput). Second level agents have equal access to the bus with respect to other second
level agents. However, the second level agents as a group have equal access to the bus as each
agent of the first level. An example of how a system may assign agents to a given level is where
devices such as video, ATM, or FDDI bus masters would be assigned to Level 1 while devices
such as SCSI, LAN, or standard expansion bus masters would be assigned to the second level.

 The figure below is an example of a fairness arbitration algorithm that uses two levels of
arbitration. The first level consists of Agent A, Agent B, and Level 2, where Level 2 is the next
agent at that level requesting access to the bus. Level 2 consists of Agent X, Agent Y, and Agent
Z. If all agents on level 1 and 2 have their REQ# lines asserted and continue to assert them, and
if Agent A is the next to receive the bus for Level 1 and Agent X is the next for Level 2, then the
order of the agents accessing the bus would be:

 A, B, Level 2 (this time it is X)

 A, B, Level 2 (this time it is Y)

 A, B, Level 2 (this time it is Z)

 and so forth.

 If only Agent B and Agent Y had their REQ#s asserted and continued to assert them, the order
would be:

 B, Level 2 (Y),

 B, Level 2 (Y).

 By requiring a fairness arbitration algorithm, the system designer can balance the needs of high
performance agents such as video, ATM, or FDDI with lower performance bus devices like LAN
and SCSI. Another system designer may put only multimedia devices on arbitration Level 1 and
put the FDDI (or ATM), LAN, and SCSI devices on Level 2. These examples achieve the highest
level of system performance possible for throughput or lowest latency without possible starvation
conditions. The performance of the system can be balanced by allocating a specific amount of bus
bandwidth to each agent by careful assignment of each master to an arbitration level and
programming each agent’s Latency Timer appropriately.

Agent A

Agent B

Level 2

Level 1

Agent X

Agent Y

Agent Z

Level 2

Revision 2.3

70

 3.4.1. Arbitration Signaling Protocol

 An agent requests the bus by asserting its REQ#. Agents must only use REQ# to signal
a true need to use the bus. An agent must never use REQ# to "park" itself on the bus. If
bus parking is implemented, it is the arbiter that designates the default owner. When the
arbiter determines an agent may use the bus, it asserts the agent's GNT#.

 The arbiter may deassert an agent's GNT# on any clock. An agent must ensure its
GNT# is asserted on the rising clock edge it wants to start a transaction. Note: A master
is allowed to start a transaction when its GNT# is asserted and the bus is in an Idle state
independent of the state of its REQ#. If GNT# is deasserted, the transaction must not
proceed. Once asserted, GNT# may be deasserted according to the following rules:

 1. If GNT# is deasserted and FRAME# is asserted on the same clock, the bus
transaction is valid and will continue.

 2. One GNT# can be deasserted coincident with another GNT# being asserted if the
bus is not in the Idle state. Otherwise, a one clock delay is required between the
deassertion of a GNT# and the assertion of the next GNT#, or else there may be
contention on the AD lines and PAR due to the current master doing IDSEL
stepping.

 3. While FRAME# is deasserted, GNT# may be deasserted at any time in order to
service a higher priority19 master or in response to the associated REQ# being
deasserted.

 Figure 3-15 illustrates basic arbitration. Two agents are used to illustrate how an arbiter
may alternate bus accesses.

CLK

FRAME#

AD

REQ#-a

REQ#-b

GNT#-a

GNT#-b

ADDRESS DATA

71 2 3 5 64

ADDRESS DATA

access - A access - B

 Figure 3-15: Basic Arbitration

 REQ#-a is asserted prior to or at clock 1 to request use of the interface. Agent A is
granted access to the bus because GNT#-a is asserted at clock 2. Agent A may start a
transaction at clock 2 because FRAME# and IRDY# are deasserted and GNT#-a is
asserted. Agent A's transaction starts when FRAME# is asserted on clock 3. Since

 19 Higher priority here does not imply a fixed priority arbitration, but refers to the agent that would win
arbitration at a given instant in time.

Revision 2.3

71

Agent A desires to perform another transaction, it leaves REQ#-a asserted. When
FRAME# is asserted on clock 3, the arbiter determines Agent B should go next and
asserts GNT#-b and deasserts GNT#-a on clock 4.

 When agent A completes its transaction on clock 4, it relinquishes the bus. All PCI
agents can determine the end of the current transaction when both FRAME# and IRDY#
are deasserted. Agent B becomes the owner on clock 5 (because FRAME# and IRDY#
are deasserted) and completes its transaction on clock 7.

 Notice that REQ#-b is deasserted and FRAME# is asserted on clock 6 indicating agent
B requires only a single transaction. The arbiter grants the next transaction to Agent A
because its REQ# is still asserted.

 The current owner of the bus keeps REQ# asserted when it requires additional
transactions. If no other requests are asserted or the current master has highest priority,
the arbiter continues to grant the bus to the current master.

 Implementation Note: Bus Parking

 When no REQ#s are asserted, it is recommended not to remove the current master’s
GNT# to park the bus at a different master until the bus enters its Idle state. If the
current bus master’s GNT# is deasserted, the duration of the current transaction is
limited to the value of the Latency Timer. If the master is limited by the Latency Timer,
it must rearbitrate for the bus which would waste bus bandwidth. It is recommended to
leave GNT# asserted at the current master (when no other REQ#s are asserted) until the
bus enters its Idle state. When the bus is in the Idle state and no REQ#s are asserted, the
arbiter may park the bus at any agent it desires.

 GNT# gives an agent access to the bus for a single transaction. If an agent desires
another access, it should continue to assert REQ#. An agent may deassert REQ#
anytime, but the arbiter may interpret this to mean the agent no longer requires use of the
bus and may deassert its GNT#. An agent should deassert REQ# in the same clock
FRAME# is asserted if it only wants to do a single transaction. When a transaction is
terminated by a target (STOP# asserted), the master must deassert its REQ# for a
minimum of two clocks, one being when the bus goes to the Idle state (at the end of the
transaction where STOP# was asserted), and the other being either the clock before or
the clock after the Idle state. For an exception, refer to Section 3.3.3.2.2. This allows
another agent to use the interface while the previous target prepares for the next access.

 The arbiter can assume the current master is "broken" if it has not started an access after
its GNT# has been asserted (its REQ# is also asserted) and the bus is in the Idle state for
16 clocks. The arbiter is allowed to ignore any “broken” master’s REQ# and may
optionally report this condition to the system. However, the arbiter may remove GNT#
at any time to service a higher priority agent. A master that has requested use of the bus
that does not assert FRAME# when the bus is in the Idle state and its GNT# is asserted
faces the possibility of losing its turn on the bus. Note: In a busy system, a master that
delays the assertion of FRAME# runs the risk of starvation because the arbiter may
grant the bus to another agent. For a master to ensure that it gains access to the bus, it
must assert FRAME# the first clock possible when FRAME# and IRDY# are deasserted
and its GNT# is asserted.

Revision 2.3

72

 3.4.2. Fast Back-to-Back Transactions

 There are two types of fast back-to-back transactions that can be initiated by the same
master: those that access the same agent and those that do not. Fast back-to-back
transactions are allowed on PCI when contention on TRDY#, DEVSEL#, STOP#, or
PERR# is avoided.

 The first type of fast back-to-back support places the burden of avoiding contention on
the master, while the second places the burden on all potential targets. The master may
remove the Idle state between transactions when it can guarantee that no contention
occurs. This can be accomplished when the master's current transaction is to the same
target as the previous write transaction. This type of fast back-to-back transaction
requires the master to understand the address boundaries of the potential target;
otherwise, contention may occur. This type of fast back-to-back is optional for a master
but must be decoded by a target. The target must be able to detect a new assertion of
FRAME# (from the same master) without the bus going to the Idle state.

 The second type of fast back-to-back support places the burden of no contention on all
potential targets. The Fast Back-to-Back Capable bit in the Status register may be
hardwired to a logical one (high) if, and, only if, the device, while acting as a bus target,
meets the following two requirements:

 1. The target must not miss the beginning of a bus transaction, nor lose the address,
when that transaction is started without a bus Idle state preceding the transaction.
In other words, the target is capable of following a bus state transition from a final
data transfer (FRAME# high, IRDY# low) directly to an address phase (FRAME#
low, IRDY# high) on consecutive clock cycles. Note: The target may or may not
be selected on either or both of these transactions, but must track bus states
nonetheless.20

 2. The target must avoid signal conflicts on DEVSEL#, TRDY#, STOP#, and
PERR#. If the target does not implement the fastest possible DEVSEL# assertion
time, this guarantee is already provided. For those targets that do perform zero
wait state decodes, the target must delay assertion of these four signals for a single
clock, except in either one of the following two conditions:

 a. The current bus transaction was immediately preceded by a bus Idle state;
that is, this is not a back-to-back transaction, or,

 b. The current target had driven DEVSEL# on the previous bus transaction;
that is, this is a back-to-back transaction involving the same target as the
previous transaction.

 Note: Delaying the assertion of DEVSEL# to avoid contention on fast back-to-back
transactions does not affect the decode speed indicated in the status register. A
device that normally asserts fast DEVSEL# still indicates “fast” in the status register
even though DEVSEL# is delayed by one clock in this case. The status bits
associated with decode time are used by the system to allow the subtractive decoding
agent to move in the time when it claims unclaimed accesses. However, if the

 20 It is recommended that this be done by returning the target state machine (refer to Appendix B) from the
B_BUSY state to the IDLE state as soon as FRAME# is deasserted and the device's decode time has been
met (a miss occurs) or when DEVSEL# is asserted by another target and not waiting for a bus Idle state
(IRDY# deasserted).

Revision 2.3

73

subtractive decode agent claims the access during medium or slow decode time
instead of waiting for the subtractive decode time, it must delay the assertion of
DEVSEL# when a fast back-to-back transaction is in progress; otherwise,
contention on DEVSEL#, STOP#, TRDY#, and PERR# may occur.

 For masters that want to perform fast back-to-back transactions that are supported by the
target mechanism, the Fast Back-to-Back Enable bit in the Command register is
required. (This bit is only meaningful in devices that act as bus masters and is fully
optional.) It is a read/write bit when implemented. When set to a one (high), the bus
master may start a PCI transaction using fast back-to-back timing without regard to
which target is being addressed providing the previous transaction was a write
transaction issued by the current bus master. If this bit is set to a zero (low) or not
implemented, the master may perform fast back-to-back only if it can guarantee that the
new transaction goes to the same target as the previous one (master based mechanism).

 This bit would be set by the system configuration routine after ensuring that all targets
on the same bus had the Fast Back-to-Back Capable Bit set.

 Note: The master based fast back-to-back mechanism does not allow these fast cycles to
occur with separate targets while the target based mechanism does.

 If the target is unable to provide both of the guarantees specified above, it must not
implement this bit at all, and it will automatically be returned as a zero when the Status
register is read.

 Fast back-to-back transactions allow agents to utilize bus bandwidth more effectively. It
is recommended that targets and those masters that can improve bus utilization should
implement this feature, particularly since the implementation cost is negligible.

 Under all other conditions, the master must insert a minimum of one Idle bus state.
(Also there is always at least one Idle bus state between transactions by different
masters.) Note: The master is required to cause an Idle state to appear on the bus when
the requirements for a fast back-to-back transaction are not met or when bus ownership
changes.

 During a fast back-to-back transaction, the master starts the next transaction immediately
without an Idle bus state (assuming its GNT# is still asserted). If GNT# is deasserted in
the last data phase of a transaction, the master has lost access to the bus and must
relinquish the bus to the next master. The last data phase completes when FRAME# is
deasserted, and IRDY# and TRDY# (or STOP#) are asserted. The current master starts
another transaction on the clock following the completion of the last data phase of the
previous transaction.

 It is important to note that agents not involved in a fast back-to-back transaction
sequence cannot (and generally need not) distinguish intermediate transaction
boundaries using only FRAME# and IRDY# (there is no bus Idle state). During fast
back-to-backs only, the master and target involved need to distinguish these boundaries.
When the last transaction is over, all agents will see an Idle state. However, those that
do support the target based mechanism must be able to distinguish the completion of all
PCI transactions and be able to detect all address phases.

 In Figure 3-16, the master completes a write on clock 3 and starts the next transaction on
clock 4. The target must begin sampling FRAME# on clock 4 since the previous
transaction completed on clock 3; otherwise, it will miss the address of the next
transaction. A device must be able to decode back-to-back operations, to determine if it
is the current target, while a master may optionally support this function. A target is free
to claim ownership by asserting DEVSEL#, then Retry the request.

Revision 2.3

74

CLK

FRAME#

AD ADDRESS DATA ADDRESS DATA

GNT#

REQ#

71 2 3 5 64

IRDY#

TRDY#

 Figure 3-16: Arbitration for Back-to-Back Access

 3.4.3. Arbitration Parking

 The term park implies permission for the arbiter to assert GNT# to a selected agent
when no agent is currently using or requesting the bus. The arbiter can select the default
owner any way it wants (fixed, last used, etc.) or can choose not to park at all
(effectively designating itself the default owner). When the arbiter asserts an agent's
GNT# and the bus is in the Idle state, that agent must enable its AD[31::00],
C/BE[3::0]#, and (one clock later) PAR output buffers within eight clocks (required),
while two-three clocks is recommended. (Refer to Section 3.7.1. for a description of the
timing relationship of PAR to AD). The agent is not compelled to turn on all buffers in
a single clock. This requirement ensures that the arbiter can safely park the bus at some
agent and know that the bus will not float. (If the arbiter does not park the bus, the
central resource device in which the arbiter is embedded typically drives the bus.)

 If the bus is in the Idle state and the arbiter removes an agent's GNT#, the agent has lost
access to the bus except for one case. The one case is if the arbiter deasserted GNT#
coincident with the agent asserting FRAME#. In this case, the master will continue the
transaction. Otherwise, the agent must tri-state AD[31::00], C/BE#[3::0], and (one
clock later) PAR. Unlike above, the agent must disable all buffers in a single clock to
avoid possible contention with the next bus owner.

 Given the above, the minimum arbitration latency achievable on PCI from the bus Idle
state is as follows:

 • Parked: zero clocks for parked agent, two clocks for others

 • Not Parked: one clock for every agent

 When the bus is parked at an agent, the agent is allowed to start a transaction without
REQ# being asserted. (A master can start a transaction when the bus is in the Idle state
and GNT# is asserted.) When the agent needs to do multiple transactions, it should
assert REQ# to inform the arbiter that it intends to do multiple transactions. When a
master requires only a single transaction, it should not assert REQ#; otherwise, the
arbiter may continue to assert its GNT# when it does not require use of the bus.

Revision 2.3

75

 3.5. Latency
 PCI is a low latency, high throughput I/O bus. Both targets and masters are limited as to
the number of wait states they can add to a transaction. Furthermore, each master has a
programmable timer limiting its maximum tenure on the bus during times of heavy bus
traffic. Given these two limits and the bus arbitration order, worst-case bus acquisition
latencies can be predicted with relatively high precision for any PCI bus master. Even
bridges to standard expansion buses with long access times (ISA, EISA, or MC) can be
designed to have minimal impact on the PCI bus and still keep PCI bus acquisition
latency predictable.

 3.5.1. Target Latency

 Target latency is the number of clocks the target waits before asserting TRDY#.
Requirements on the initial data phase are different from those of subsequent data
phases.

 3.5.1.1. Target Initial Latency

 Target initial latency is the number of clocks from the assertion of FRAME# to the
assertion of TRDY# which completes the initial data phase, or to the assertion of
STOP# in the Retry and Target-Abort cases. This number of clocks varies depending
on whether the command is a read or write, and, if a write, whether it can be posted or
not. A memory write command should simply be posted by the target in a buffer and
written to the final destination later. In this case, the target initial latency is small
because the transaction was simply a register to register transfer. Meeting target initial
latency on read transactions is more difficult since this latency is a combination of the
access time of the storage media (e.g., disk, DRAM, etc.) and the delay of the interface
logic. Meeting initial latency on I/O and configuration write transactions are similar to
read latency.

 Target initial latency requirements depend on the state of system operation. The system
can either be operating in initialization-time or run-time. Initialization-time begins when
RST# is deasserted and completes 225 PCI clocks later. Run-time follows initialization-
time.

 If a target is accessed during initialization-time, it is allowed to do any of the following:

• Ignore the request (except if it is a boot device)

• Claim the access and hold in wait states until it can complete the request, not to
exceed the end of initialization-time

• Claim the access and terminate with Retry

 If a target is accessed during run-time (RST# has been deasserted greater than 225

clocks), it must complete the initial data phase of a transaction (read or write) within 16
clocks from the assertion of FRAME#. The target completes the initial data phase by
asserting TRDY# (to accept or provide the requested data) or by terminating the request
by asserting STOP# within the target initial latency requirement.

Revision 2.3

76

 Host bus bridges are granted an additional 16 clocks, to a maximum of 32 clocks, to
complete the initial data phase when the access hits a modified line in a cache.
However, the host bus bridge can never exceed 32 clocks on any initial data phase.

 In most designs, the initial data phase latency is known when the device is designed. If
the time required to complete the initial data phase will normally exceed the maximum
target initial latency specification, the device must terminate the transaction with Retry
as soon as possible and execute the transaction as a Delayed Transaction.

 In the unusual case in which the initial data phase latency cannot be determined in
advance, the target is allowed to implement a counter that causes the target to assert
STOP# and to begin execution of the transaction as a Delayed Transaction on or before
the sixteenth clock, if TRDY# is not asserted sooner. A target device that waits for an
initial data phase latency counter to expire prior to beginning a Delayed Transaction
reduces PCI bandwidth available to other agents and limits transaction efficiency.
Therefore, this behavior is strongly discouraged.

 Implementation Note: Working with Older Targets that Violate the
Target Initial Latency Specification

 All new target devices must adhere to the 16 clock initial latency requirement except as
noted above. However, a new master should not depend on targets meeting the 16 clock
maximum initial access latency for functional operation (in the near term), but must
function normally (albeit with reduced performance) since systems and devices were
designed and built against an earlier version of this specification and may not meet the
new requirements. New devices should work with existing devices.

 Three options are given to targets to meet the initial latency requirements. Most targets
will use either Option 1 or Option 2. Those devices unable to use Option 1 or Option 2
are required to use Option 3.

 Option 1 is for a device that always transfers data (asserts TRDY#) within 16 clocks
from the assertion of FRAME#.

 Note: The majority of I/O controllers built prior to revision 2.1 of this specification
will meet the initial latency requirements using Option 1. In this case, the target
always asserts TRDY# to complete the initial data phase of the transaction within 16
clocks of the assertion of FRAME#.

 Option 2 is for devices that normally transfer data within 16 clocks, but under some
specific conditions will exceed the initial latency requirement. Under these conditions,
the device terminates the access with Retry within 16 clocks from the assertion of
FRAME#.

 For devices that cannot use Option 1, a small modification may be required to meet
the initial latency requirements as described by Option 2. This option is used by a
target that can normally complete the initial data phase within 16 clocks (same as
Option 1), but occasionally will take longer and uses the assertion of STOP# to
meet the initial latency requirement. It then becomes the responsibility of the master
to attempt the transaction again at a later time. A target is permitted to do this only
when there is a high probability the target will be able to complete the transaction
when the master repeats the request; otherwise, the target must use Option 3.

Revision 2.3

77

 Implementation Note: An Example of Option 2

 Consider a simple graphic device that normally responds to a request within 16 clocks
but under special conditions, such as refreshing the screen, the internal bus is “busy” and
prevents data from transferring. In this case, the target terminates the access with Retry
knowing the master will repeat the transaction and the target will most likely be able to
complete the transfer then.

 The device could have an internal signal that indicates to the bus interface unit that the
internal bus is busy and data cannot be transferred at this time. This allows the device to
claim the access (asserts DEVSEL#) and immediately terminate the access with Retry.
By doing this instead of terminating the transaction 16 clocks after the assertion of
FRAME#, other agents can use the bus.

 Option 3 is for a device that frequently cannot transfer data within 16 clocks. This
option requires the device to use Delayed Transactions which are discussed in detail in
Section 3.3.3.3.

 Those devices that cannot meet the requirements of Option 1 or 2 are required to use
Option 3. This option is used by devices that under normal conditions cannot
complete the transaction within the initial latency requirements. An example could
be an I/O controller that has several internal functions contending with the PCI
interface to access an internal resource. Another example could be a device that acts
like a bridge to another device or bus where the initial latency to complete the access
may be greater than 16 clocks. The most common types of bridges are host bus
bridges, standard expansion bus bridges, and PCI-to-PCI bridges.

 Implementation Note: Using More Than One Option to Meet Initial
Latency

 A combination of the different options may be used based on the access latency of a
particular device. For example, a graphics controller may meet the initial latency
requirements using Option 1 when accessing configuration or internal (I/O or memory
mapped) registers. However, it may be required to use Option 2 or in some cases
Option 3 when accessing the frame buffer.

 3.5.1.2. Target Subsequent Latency

 Target subsequent latency is the number of clocks from the assertion of IRDY# and
TRDY# for one data phase to the assertion of TRDY# or STOP# for the next data phase
in a burst transfer. The target is required to complete a subsequent data phase within
eight clocks from the completion of the previous data phase. This requires the target to
complete the data phase either by transferring data (TRDY# asserted), by doing target
Disconnect without data (STOP# asserted, TRDY# deasserted), or by doing Target-
Abort (STOP# asserted, DEVSEL# deasserted) within the target subsequent latency
requirement.

 In most designs, the latency to complete a subsequent data phase is known when the
device is being designed. In this case, the target must manipulate TRDY# and STOP#
so as to end the transaction (subsequent data phase) upon completion of data phase "N"
(where N=1, 2, 3, ...), if incremental latency to data phase "N+1" is greater than eight
clocks. For example, assume a PCI master read from an expansion bus takes a minimum
of 15 clocks to complete each data phase. Applying the rule for N = 1, the incremental

Revision 2.3

78

latency to data phase 2 is 15 clocks; thus, the target must terminate upon completion of
data phase 1 (i.e., a target this slow must break attempted bursts on data phase
boundaries).

 For designs where the latency to complete a subsequent data phase cannot be determined
in advance, the target is allowed to implement a counter that causes the target to assert
STOP# before or during the eighth clock if TRDY# is not asserted. If TRDY# is
asserted before the count expires, the counter is reset and the target continues the
transaction.

 3.5.2. Master Data Latency

 Master data latency is the number of clocks the master takes to assert IRDY# indicating
it is ready to transfer data. All masters are required to assert IRDY# within eight clocks
of the assertion of FRAME# on the initial data phase and within eight clocks on all
subsequent data phases. Generally in the first data phase of a transaction, there is no
reason for a master to delay the assertion of IRDY# more than one or two clocks for a
write transaction. The master should never delay the assertion of IRDY# on a read
transaction. If the master has no buffer available to store the read data, it should delay
requesting use of the bus until a buffer is available. On a write transaction, the master
should have the data available before requesting the bus to transfer the data. Data
transfers on PCI should be done as register to register transfers to maximize
performance.

 3.5.3. Memory Write Maximum Completion Time Limit

 A target may, from time to time, terminate a memory write transaction with Retry while
temporary internal conflicts are being resolved; for example, when all the memory-write
data buffers are full or during a video screen refresh. However, a target is not permitted
to terminate memory write transactions with Retry indefinitely.

 After a target terminates a memory write transaction with Retry, it is required to be
ready to complete at least one data phase of a memory write within a specified number
of PCI clock cycles from the first Retry termination. This specified number of clock
cycles is 334 clocks for systems running at 33 MHz or slower and 668 clocks for
systems running at 66 MHz. This time limit, which translates to 10 microseconds at
maximum frequencies (33 MHz and 66 MHz), is called the Maximum Completion Time.
If a target is presented with multiple memory write requests, the Maximum Completion
Time is measured from the time the first memory write transaction is terminated with
Retry until the time the first data phase of any memory write to the target is completed
with something other than Retry. Once a non-Retry termination has occurred, the
Maximum Completion Time limit starts over again with the next Retry termination.

 The actual time that the data phase completes will also depend upon when the master
repeats the transaction. Targets must be designed to meet the Maximum Completion
Time requirements assuming the master will repeat the memory write transaction
precisely at the limit of the Maximum Completion Time.

Revision 2.3

79

 Implementation Note: Meeting Maximum Completion Time Limit by
Restricting Use of the Device

 Some target hardware designs may not be able to process every memory write
transaction within the Maximum Completion Time. An example is writing to a
command queue where commands can take longer than the Maximum Completion Time
to complete. Subsequent writes to such a target when it is currently processing a
previous write could experience completion times that are longer than the Maximum
Completion Time. Devices that take longer than the Maximum Completion Time to
process some memory write transaction must restrict the usage of the device to prevent
write transactions when the device cannot complete them within the Maximum
Completion Time. This is typically done by the device driver and is accomplished by
limiting the rate at which memory writes are issued to the device, or by reading the
device to determine that a buffer is available before the write transaction is issued.

 Bridge devices (Base Class = 0x06) are exempt from the Maximum Completion Time
requirement for any requests that move data across the bridge. Bridge devices must
follow the Maximum Completion Time requirement for transactions that address
locations within (or associated with) the bridge.

 The Maximum Completion Time requirement is not in effect during device initialization
time, which is defined as the 225 PCI clocks immediately following the deassertion of
RST#.

 Even though targets are required to complete memory write transactions within the
Maximum Completion Time, masters cannot rely on memory write transactions
completing within this time. A transaction may flow through a PCI-to-PCI bridge or be
one of multiple transactions to a target. In both of these cases, the actual completion
time may exceed the normal limit.

 3.5.4. Arbitration Latency

 Arbitration latency is the number of clocks from when a master asserts its REQ# until
the bus reaches an Idle state and the master’s GNT# is asserted. In a lightly loaded
system, arbitration latency will generally just be the time for the bus arbiter to assert the
master’s GNT#. If a transaction is in progress when the master’s GNT# is asserted, the
master must wait the additional time for the current transaction to complete.

 The total arbitration latency for a master is a function of how many other masters are
granted the bus before it, and how long each one keeps the bus. The number of other
masters granted the bus is determined by the bus arbiter as discussed in Section 3.4.
Each master’s tenure on the bus is limited by its master Latency Timer when its GNT#
has been deasserted.

Revision 2.3

80

 The master Latency Timer is a programmable timer in each master’s Configuration
Space (refer to Section 6.2.4.). It is required for each master that is capable of bursting
more than two data phases. Each master's Latency Timer is cleared and suspended
whenever it is not asserting FRAME#. When a master asserts FRAME#, it enables its
Latency Timer to count. The master’s behavior upon expiration of the Latency Timer
depends on what command is being used and the state of FRAME# and GNT# when the
Latency Timer expires.

 • If the master deasserts FRAME# prior to or on the same clock that the counter
expires, the Latency Timer is meaningless. The cycle terminates as it normally
would when the current data phase completes.

 • If FRAME# is asserted when the Latency Timer expires, and the command is not
Memory Write and Invalidate, the master must initiate transaction termination when
GNT# is deasserted, following the rules described in Section 3.3.3.1. In this case,
the master has committed to the target that it will complete the current data phase
and one more (the final data phase is indicated when FRAME# is deasserted).

 • If FRAME# is asserted when the Latency Timer expires, the command is Memory
Write and Invalidate, and the current data phase is not transferring the last DWORD
of the current cacheline when GNT# is deasserted, the master must terminate the
transaction at the end of the current cacheline (or when STOP# is asserted).

 • If FRAME# is asserted when the Latency Timer expires, the command is Memory
Write and Invalidate, and the current data phase is transferring the last DWORD of
the current cacheline when GNT# is deasserted, the master must terminate the
transaction at the end of the next cacheline. (This is required since the master
committed to the target at least one more data phase, which would be the beginning
of the next cacheline which it must complete, unless STOP# is asserted.)

 In essence, the value programmed into the Latency Timer represents a minimum
guaranteed number of clocks allotted to the master, after which it must surrender tenure
as soon as possible after its GNT# is deasserted. The actual duration of a transaction
(assuming its GNT# is deasserted) can be from a minimum of the Latency Timer value
plus one clock to a maximum of the Latency Timer value plus the number of clocks
required to complete an entire cacheline transfer (unless the target asserts STOP#).

 3.5.4.1. Bandwidth and Latency Considerations

 In PCI systems, there is a tradeoff between the desire to achieve low latency and the
desire to achieve high bandwidth (throughput). High throughput is achieved by allowing
devices to use long burst transfers. Low latency is achieved by reducing the maximum
burst transfer length. The following discussion is provided (for a 32-bit bus) to illustrate
this tradeoff.

 A given PCI bus master introduces latency on PCI each time it uses the PCI bus to do a
transaction. This latency is a function of the behavior of both the master and the target
device during the transaction as well as the state of the master’s GNT# signal. The bus
command used, transaction burst length, master data latency for each data phase, and the
Latency Timer are the primary parameters which control the master’s behavior. The bus
command used, target latency, and target subsequent latency are the primary parameters
which control the target’s behavior.

 A master is required to assert its IRDY# within eight clocks for any given data phase
(initial and subsequent). For the first data phase, a target is required to assert its TRDY#

Revision 2.3

81

or STOP# within 16 clocks from the assertion of FRAME# (unless the access hits a
modified cacheline in which case 32 clocks are allowed for host bus bridges). For all
subsequent data phases in a burst transfer, the target must assert its TRDY# or STOP#
within eight clocks. If the effects of the Latency Timer are ignored, it is a
straightforward exercise to develop equations for the worst case latencies that a PCI bus
master can introduce from these specification requirements.

 latency_max (clocks) = 32 + 8 * (n-1) if a modified cacheline is hit

 (for a host bus bridge only)

 or = 16 + 8 * (n-1) if not a modified cacheline

 where n is the total number of data transfers in the transaction

 However, it is more useful to consider transactions that exhibit typical behavior. PCI is
designed so that data transfers between a bus master and a target occur as register to
register transfers. Therefore, bus masters typically do not insert wait states since they
only request transactions when they are prepared to transfer data. Targets typically have
an initial access latency less than the 16 (32 for modified cacheline hit for host bus
bridge) clock maximum allowed. Once targets begin transferring data (complete their
first data phase), they are typically able to sustain burst transfers at full rate (one clock
per data phase) until the transaction is either completed by the master or the target's
buffers are filled or are temporarily empty. The target can use the target Disconnect
protocol to terminate the burst transaction early when its buffers fill or temporarily
empty during the transaction. Using these more realistic considerations, the worst case
latency equations can be modified to give a typical latency (assuming that the target’s
initial data phase latency is eight clocks) again ignoring the effects of the Latency Timer.

 latency_typical (clocks) = 8 + (n-1)

 If a master were allowed to burst indefinitely with a target which could absorb or source
the data indefinitely, then there would be no upper bound on the latency which a master
could introduce into a PCI system. However, the master Latency Timer provides a
mechanism to constrain a master's tenure on the bus (when other bus masters need to use
the bus).

 In effect, the Latency Timer controls the tradeoff between high throughput (higher
Latency Timer values) and low latency (lower Latency Timer values). Table 3-4 shows
the latency for different burst length transfers using the following assumptions:
• The initial latency introduced by the master or target is eight clocks.
• There is no latency on subsequent data phases (IRDY# and TRDY# are always

asserted).
• The number of data phases are powers of two because these are easy to correlate to

cacheline sizes.
• The Latency Timer values were chosen to expire during the next to last data phase,

which allows the master to complete the correct number of data phases.

 For example, with a Latency Timer of 14 and a target initial latency of 8, the Latency
Timer expires during the seventh data phase. The transaction completes with the eighth
data phase.

Revision 2.3

82

 Table 3-4: Latency for Different Burst Length Transfers

 Data
Phases

 Bytes
Transferred

 Total
Clocks

 Latency Timer
(clocks)

 Bandwidth
(MB/s)

 Latency
(µs)

 8 32 16 14 60 .48

 16 64 24 22 80 .72

 32 128 40 38 96 1.20

 64 256 72 70 107 2.16

 Data Phases Number of data phases completed during transaction

 Bytes Transferred Total number of bytes transferred during transaction (assuming

 32-bit transfers)

 Total Clocks Total number of clocks used to complete the transfer

 total_clocks = 8 + (n-1) + 1 (Idle time on bus)

 Latency Timer Latency Timer value in clocks such that the Latency Timer

 expires in next to last data phase

 latency_timer = total_clocks - 2

 Bandwidth Calculated bandwidth in MB/s

 bandwidth = bytes_transferred / (total clocks * 30 ns)

 Latency Latency in microseconds introduced by transaction

 latency = total clocks * 30 ns

 Table 3-4 clearly shows that as the burst length increases, the amount of data transferred
increases. Note: The amount of data doubles between each row in the table, while the
latency increases by less than double. The amount of data transferred between the first
row and the last row increases by a factor of 8, while the latency increases by a factor of
4.5. The longer the transaction (more data phases), the more efficiently the bus is being
used. However, this increase in efficiency comes at the expense of larger buffers.

 3.5.4.2. Determining Arbitration Latency

 Arbitration latency is the number of clocks a master must wait after asserting its REQ#
before it can begin a transaction. This number is a function of the arbitration algorithm
of the system; i.e., the sequence in which masters are given access to the bus and the
value of the Latency Timer of each master. Since these factors will vary from system to
system, the best an individual master can do is to pick a configuration that is considered
the typical case and apply the latency discussion to it to determine the latency a device
will experience.

Revision 2.3

83

 Arbitration latency is also affected by the loading of the system and how efficient the
bus is being used. The following two examples illustrate a lightly and heavily loaded
system where the bus (PCI) is 32-bit. The lightly loaded example is the more typical
case of systems today, while the second is more of a theoretical maximum.

 Lightly Loaded System

 For this example, assume that no other REQ#s are asserted and the bus is either in
the Idle state or that a master is currently using the bus. Since no other REQ#s are
asserted, as soon as Agent A’s REQ# is asserted, the arbiter will assert its GNT# on
the next evaluation of the REQ# lines. In this case, Agent A’s GNT# will be
asserted within a few clocks. Agent A gains access to the bus when the bus is in the
Idle state (assuming its GNT# is still active).

 Heavily Loaded System

 This example will use the arbiter described in the implementation note in
Section 3.4. Assume that all agents have their REQ# lines asserted and all want to
transfer more data than their Latency Timers allow. To start the sequence, assume
that the next bus master is Agent A on level 1 and Agent X on level 2. In this
example, Agent A has a very small number of clocks before it gains access to the
bus, while Agent Z has the largest number. In this example, Agents A and B each
get a turn before an Agent at Level 2. Therefore, Agents A and B each get three
turns on the bus, and Agents X and Y each get one turn before Agent Z gets a turn.
Arbitration latency (in this example) can be as short as a few clocks for Agent A or
(assuming a Latency Timer of 22 clocks) as long as 176 clocks (8 masters * 22
clocks/master) for Agent Z. Just to keep this in perspective, the heavily loaded
system is constantly moving about 90 MB/s of data (assuming target initial latency
of eight clocks and target subsequent latency of one clock).

 As seen in the example, a master experiences its maximum arbitration latency when all
the other masters use the bus up to the limits of their Latency Timers. The probability of
this happening increases as the loading of the bus increases. In a lightly loaded system,
fewer masters will need to use the bus or will use it less than their Latency Timer would
allow, thus allowing quicker access by the other masters.

 How efficiently each agent uses the bus will also affect average arbitration latencies.
The more wait states a master or target inserts on each transaction, the longer each
transaction will take, thus increasing the probability that each master will use the bus up
to the limit of its Latency Timer.

Revision 2.3

84

 The following examples illustrate the impact on arbitration latency as the efficiency of
the bus goes down due to wait states being inserted. In both examples, the system has a
single arbitration level, the Latency Timer is set to 22 and there are five masters that
have data to move. A Latency Timer of 22 allows each master to move a 64-byte
cacheline if initial latency is only eight clocks and subsequent latency is one clock. The
high bus efficiency example illustrates that the impact on arbitration latency is small
when the bus is being used efficiently.

 System with High Bus Efficiency

 In this example, each master is able to move an entire 64-byte cacheline before its
respective Latency Timer expires. This example assumes that each master is ready
to transfer another cacheline just after it completes its current transaction. In this
example, the Latency Timer has no affect. It takes the master

 [(1 idle clock) + (8 initial TRDY# clocks)+ (15 subsequent TRDY# clocks)]
 * 30 ns/clock = 720 ns

 to complete each cacheline transfer.

 If all five masters use the same number of clocks, then each master will have to wait
for the other four, or

 720 ns/master * 4 other masters = 2.9 µs

 between accesses. Each master moves data at about 90 MB/s.

 The Low Bus Efficiency example illustrates the impact on arbitration latency as a result
of the bus being used inefficiently. The first effect is that the Latency Timer expires.
The second effect is that is takes two transactions to complete a single cacheline transfer
which causes the loading to increase.

 System with Low Bus Efficiency

 This example keeps the target initial latency the same but increases the subsequent
latency (master or target induced) from 1 to 2. In this example, the Latency Timer
will expire before the master has transferred the full 64-byte cacheline. When the
Latency Timer expires, GNT# is deasserted, and FRAME# is asserted, the master
must stop the transaction prematurely and completes the final two data phases it has
committed to complete (unless a MWI command in which case it completes the
current cacheline). Each master’s tenure on the bus would be

 [(1 idle clock) + (22 Latency Timer clocks)+
(2 * 2 subsequent TRDY# clocks)]
 * 30 ns/clock = 810 ns

 and each master has to wait

 810 ns/master * 4 other masters = 3.2 µs

 between accesses. However, the master only took slightly more time than the High
Bus Efficiency example, but only completed nine data phases (36 bytes, just over
half a cacheline) instead of 16 data phases. Each master moves data at only about
44 MB/s.

 The arbitration latency in the Low Bus Efficiency example is 3 µs instead of 2.9 µs as in
the High Bus Efficiency example; but it took the master two transactions to complete the
transfer of a single cacheline. This doubled the loading of the system without increasing

Revision 2.3

85

the data throughput. This resulted from simply adding a single wait state to each data
phase.

 Also, note that the above description assumes that all five masters are in the same
arbitration level. When a master is in a lower arbitration level or resides behind a PCI-
to-PCI bridge, it will experience longer latencies between accesses when the primary
PCI bus is in use.

 The maximum limits of a target and master data latency in this specification are
provided for instantaneous conditions while the recommendations are used for normal
behavior. An example of an instantaneous condition is when the device is unable to
continue completing a data phase on each clock. Rather than stopping the transfer
(introducing the overhead of re-arbitration and target initial latency), the target would
insert a couple of wait states and continue the burst by completing a data phase on each
clock. The maximum limits are not intended to be used on every data phase, but rather
on those rare occasions when data is temporarily unable to transfer.

 The following discussion assumes that devices are compliant with the specification and
have been designed to minimize their impact on the bus. For example, a master is
required to assert IRDY# within eight clocks for all data phases; however, it is
recommended that it assert IRDY# within one or two clocks.

 Example of a System

 The following system configuration and the bandwidth each device requires are
generous and exceed the needs of current implementations. The system that will be
used for a discussion about latency is a workstation comprised of:

 Host bus bridge (with integrated memory controller)
 Graphics device (VGA and enhanced graphics)
 Frame grabber (for video conferencing)
 LAN connection
 Disk (a single spindle, IDE or SCSI)
 Standard expansion bus bridge (PCI to ISA)
 A PCI-to-PCI bridge for providing more than three add-in slots

 The graphics controller is capable of sinking 50 MB/s. This assumes that the host
bus bridge generates 30 MB/s and the frame grabber generates 20 MB/s.

 The LAN controller requires only about 4 MB/s (100 Mb) on average (workstation
requirements) and is typically much less.

 The disk controller can move about 5 MB/s.

 The standard expansion bus provides a cost effective way of connecting standard I/O
controllers (i.e., keyboard, mouse, serial, parallel ports, etc.) and masters on this bus
place a maximum of about 4 MB/s (aggregate plus overhead) on PCI and will
decrease in future systems.

 The PCI-to-PCI bridge, in and of itself, does not use PCI bandwidth, but a place
holder of 9 MB/s is allocated for devices that reside behind it.

 The total bandwidth needs of the system is about 72 MB/s (50 + 4 + 5 + 4 + 9) if all
devices want to use the bus at the same time.

Revision 2.3

86

 To show that the bus can handle all the devices, these bandwidth numbers will be
used in the following discussion. The probability of all devices requiring use of the
bus at the same time is extremely low, and the typical latency will be much lower
than the worst cases number discussed. For this discussion, the typical numbers
used are at a steady state condition where the system has been operating for a while
and not all devices require access to the bus at the same time.

 Table 3-5 lists the requirements of each device in the target system and how many
transactions each device must complete to sustain its bandwidth requirements within
10 µs time slices.

 The first column identifies the device generating the data transfer.

 The second column is the total bandwidth the device needs.

 The third column is the approximate number of bytes that need to be transferred
during this 10 µs time slice.

 The fourth column is the amount of time required to move the data.

 The last column indicates how many different transactions that are required to move
the data. This assumes that the entire transfer cannot be completed as a single
transaction.

 Table 3-5: Example System

 Device Bandwidth
(MB/s)

 Bytes/10 µs Time Used
(µs)

 Number of
Transactions

per Slice

 Notes

 Graphics 50 500 6.15 10 1

 LAN 4 40 0.54 1 2

 Disk 5 50 0.63 1 3

 ISA bridge 4 40 0.78 2 4

 PCI-to PCI
bridge

 9 90 1.17 2 5

 Total 72 720 9.27 16

 Notes:

 1. Graphics is a combination of host bus bridge and frame grabber writing data to the frame buffer.
The host moves 300 bytes using five transactions with 15 data phases each, assuming eight
clocks of target initial latency. The frame grabber moves 200 bytes using five transactions with
10 data phases each, assuming eight clocks of target initial latency.

 2. The LAN uses a single transaction with 10 data phases with eight clocks of target initial latency.

 3. The disk uses a single transaction with 13 data phases with eight clocks of target initial latency.

 4. The ISA bridge uses two transactions with five data phases each with eight clocks of target initial
latency.

 5. The PCI-to-PCI bridge uses two transactions. One transaction is similar to the LAN and the
second is similar to the disk requirements.

Revision 2.3

87

 If the targeted system only needs full motion video or a frame grabber but not both, then
replace the Graphics row in Table 3-5 with the appropriate row in Table 3-6. In either
case, the total bandwidth required on PCI is reduced.

 Table 3-6: Frame Grabber or Full Motion Video Example

 Device Bandwid
th (MB/s)

 Bytes/10 µµµµs Time
Used
(µµµµs)

 Number of
Transactions

per Slice

 Notes

 Host
writing to
the frame
buffer

 40 400 4.2 5 1

 Frame
grabber

 20 200 3.7 5 2

 Notes

 1. The host uses five transactions with 20 data phases each, assuming eight clocks of target
initial latency.

 2. The frame grabber uses five transactions with 10 data phases each, assuming eight clocks
of target initial latency.

 The totals for Table 3-5 indicate that within a 10 µs window all the devices listed in the
table move the data they required for that time slice. In a real system, not all devices
need to move data all the time. But they may be able to move more data in a single
transaction. When devices move data more efficiently, the latency each device
experiences is reduced.

 If the above system supported the arbiter illustrated in the System Arbitration Algorithm
Implementation Note (refer to Section 3.4.), the frame grabber (or graphics device when
it is a master) and the PCI-to-PCI bridge would be put in the highest level. All other
devices would be put in the lower level (i.e., level two). Table 3-5 shows that if all
devices provide 10 µs of buffering, they would not experience underruns or overruns.
However, for devices that move large blocks of data and are generally given higher
priority in a system, then a latency of 3 µs is reasonable. (When only two agents are at
the highest level, each experiences about 2 µs of delay between transactions. The table
assumes that the target is able to consume all data as a single transaction.)

 3.5.4.3. Determining Buffer Requirements

 Each device that interfaces to the bus needs buffering to match the rate the device
produces or consumes data with the rate that it can move data across the bus. The size of
buffering can be determined by several factors based on the functionality of the device
and the rate at which it handles data. As discussed in the previous section, the arbitration
latency a master experiences and how efficiently data is transferred on the bus will affect
the amount of buffering a device requires.

 In some cases, a small amount of buffering is required to handle errors, while more
buffering may give better bus utilization. For devices which do not use the bus very
much (devices which rarely require more than 5 MB/s), it is recommended that a
minimum of four DWORDs of buffering be supported to ensure that transactions on the
bus are done with reasonable efficiency. Moving data as entire cachelines is the
preferred transfer size. Transactions less than four DWORDs in length are inefficient
and waste bus bandwidth. For devices which use the bus a lot (devices which frequently

Revision 2.3

88

require more than 5 MB/s), it is recommended that a minimum of 32 DWORDs of
buffering be supported to ensure that transactions on the bus are done efficiently.
Devices that do not use the bus efficiently will have a negative impact on system
performance and a larger impact on future systems.

 While these recommendations are minimums, the real amount of buffering a device
needs is directly proportional to the difficulty required to recover from an underrun or
overrun. For example, a disk controller would provide sufficient buffering to move data
efficiently across PCI, but would provide no additional buffering for underruns and
overruns (since they will not occur). When data is not available to write to the disk, the
controller would just wait until data is available. For reads, when a buffer is not
available, it simply does not accept any new data.

 A frame grabber must empty its buffers before new data arrives or data is destroyed. For
systems that require good video performance, the system designer needs to provide a
way for that agent to be given sufficient bus bandwidth to prevent data corruption. This
can be accomplished by providing an arbiter that has different levels and/or adjusting the
Latency Timer of other masters to limit their tenure on the bus.

 The key for future systems is to have all devices use the bus as efficiently as possible.
This means to move as much data as possible (preferably several cachelines) in the
smallest number of clocks (preferably one clock subsequent latency). As devices do
this, the entire system experiences greater throughput and lower latencies. Lower
latencies allow smaller buffers to be provided in individual devices. Future benchmarks
will allow system designers to distinguish between devices that use the bus efficiently
and those that do not. Those that do will enable systems to be built that meet the
demands of multimedia systems.

 3.6. Other Bus Operations

 3.6.1. Device Selection

 DEVSEL# is driven by the target of the current transaction as shown in Figure 3-17 to
indicate that it is responding to the transaction. DEVSEL# may be driven one, two, or
three clocks following the address phase. Each target indicates the DEVSEL# timing it
uses in its Configuration Space Status register described in Section 6.2.3. DEVSEL#
must be asserted with or prior to the edge at which the target enables its TRDY#,
STOP#, and data if a read transaction. In other words, a target must assert DEVSEL#
(claim the transaction) before or coincident with signaling any other target response.
Once DEVSEL# has been asserted, it cannot be deasserted until the last data phase has
completed, except to signal Target-Abort. Refer to Section 3.3.3.2. for more
information.

Revision 2.3

89

TRDY#

DEVSEL#

IRDY#

CLK

NO RESPONSE

ACKNOWLEDGE
FAST MED SLOW SUB

FRAME#

1 2 3 4 5 6 7 8

 Figure 3-17: DEVSEL# Assertion

 If no agent asserts DEVSEL# within three clocks of FRAME#, the agent doing
subtractive decode may claim and assert DEVSEL#. If the system does not have a
subtractive decode agent, the master never sees DEVSEL# asserted and terminates the
transaction per the Master-Abort mechanism (refer to Section 3.3.3.1.).

 A target must do a full decode before driving/asserting DEVSEL#, or any other target
response signal. It is illegal to drive DEVSEL# prior to a complete decode and then let
the decode combinationally resolve on the bus. (This could cause contention.) A target
must qualify the AD lines with FRAME# before DEVSEL# can be asserted on
commands other than configuration. A target must qualify IDSEL with FRAME# and
AD[1::0] before DEVSEL# can be asserted on a configuration command.

 It is expected that most (perhaps all) target devices will be able to complete a decode and
assert DEVSEL# within one or two clocks of FRAME# being asserted (fast and
medium in the figure).

 Accordingly, the subtractive decode agent may provide an optional device dependent
configuration register that can be programmed to pull in by one or two clocks the edge at
which it asserts DEVSEL#, allowing faster access to the expansion bus. Use of such an
option is limited by the slowest positive decode agent on the bus.

 If the first byte addressed by the transaction maps into the target's address range, it
asserts DEVSEL# to claim the access. But if the master attempts to continue the burst
transaction across the resource boundary, the target is required to signal Disconnect.

 When a target claims an I/O access and the byte enables indicate one or more bytes of
the access are outside the target's address range, it must signal Target-Abort. (Refer to
Section 3.3.3.2. for more information.) To deal with this type of I/O access problem, a
subtractive decode device (expansion bus bridge) may do one of the following:

 • Do positive decode (by including a byte map) on addresses for which different
devices share common DWORDs, additionally using byte enables to detect this
problem and signal Target-Abort.

 • Pass the full access to the expansion bus, where the portion of the access that
cannot be serviced will quietly drop on the floor. (This occurs only when the first
addressed target resides on the expansion bus and the other is on PCI.)

Revision 2.3

90

 3.6.2. Special Cycle

 The Special Cycle command provides a simple message broadcast mechanism on PCI.
In addition to communicating processor status (as is done on Intel processor buses), it
may also be used for logical sideband signaling between PCI agents, when such
signaling does not require the precise timing or synchronization of physical signals.

 A good paradigm for the Special Cycle command is that of a “logical wire” which only
signals single clock pulses; i.e., it can be used to set and reset flip flops in real time
implying that delivery is guaranteed. This allows the designer to define necessary
sideband communication without requiring additional pins. As with sideband signaling
in general, implementation of Special Cycle command support is optional.

 The Special Cycle command contains no explicit destination address, but is broadcast to
all agents on the same bus segment. Each receiving agent must determine whether the
message is applicable to it. PCI agents will never assert DEVSEL# in response to a
Special Cycle command.

 Note: Special Cycle commands do not cross PCI-to-PCI bridges. If a master desires to
generate a Special Cycle command on a specific bus in the hierarchy, it must use a Type
1 configuration write command to do so. Type 1 configuration write commands can
traverse PCI-to-PCI bridges in both directions for the purpose of generating Special
Cycle commands on any bus in the hierarchy and are restricted to a single data phase in
length. However, the master must know the specific bus on which it desires to generate
the Special Cycle command and cannot simply do a broadcast to one bus and expect it to
propagate to all buses. Refer to Section 3.2.2.3.1. for more information.

 A Special Cycle command may contain optional, message dependent data, which is not
interpreted by the PCI sequencer itself, but is passed, as necessary, to the hardware
application connected to the PCI sequencer. In most cases, explicitly addressed
messages should be handled in one of the three physical address spaces on PCI and not
with the Special Cycle command.

 Using a message dependent data field can break the logical wire paradigm mentioned
above and create delivery guarantee problems. However, since targets only accept
messages they recognize and understand, the burden is placed on them to fully process
the message in the minimum delivery time (six bus clocks) or to provide any necessary
buffering for messages they accept. Normally this buffering is limited to a single flip-
flop. This allows delivery to be guaranteed. In some cases, it may not be possible to
buffer or process all messages that could be received. In this case, there is no guarantee
of delivery.

 A Special Cycle command is like any other bus command where there is an address
phase and a data phase. The address phase starts like all other commands with the
assertion of FRAME# and completes like all other commands when FRAME# and
IRDY# are deasserted. The uniqueness of this command compared to the others is that
no agent responds with the assertion of DEVSEL# and the transaction concludes with a
Master-Abort termination. Master-Abort is the normal termination for Special Cycle
transactions and no errors are reported for this case of Master-Abort termination. This
command is basically a broadcast to all agents, and interested agents accept the
command and process the request.

 The address phase contains no valid information other than the command field. There is
no explicit address; however, AD[31::00] are driven to a stable level and parity is

Revision 2.3

91

generated. During the data phase, AD[31::00] contain the message type and an optional
data field. The message is encoded on the least significant 16 lines, namely
AD[15::00]. The optional data field is encoded on the most significant 16 lines, namely
AD[31::16], and is not required on all messages. The master of a Special Cycle
command can insert wait states like any other command while the target cannot (since no
target claimed the access by asserting DEVSEL#). The message and associated data are
only valid on the first clock IRDY# is asserted. The information contained in, and the
timing of, subsequent data phases are message dependent. When the master inserts a
wait state or performs multiple data phases, it must extend the transaction to give
potential targets sufficient time to process the message. This means the master must
guarantee the access will not complete for at least four clocks (may be longer) after the
last valid data completes. For example, a master keeps IRDY# deasserted for two clocks
for a single data phase Special Cycle command. Because the master inserted wait states,
the transaction cannot be terminated with Master-Abort on the fifth clock after
FRAME# (the clock after subtractive decode time) like usual, but must be extended at
least an additional two clocks. When the transaction has multiple data phases, the master
cannot terminate the Special Cycle command until at least four clocks after the last valid
data phase. Note: The message type or optional data field will indicate to potential
targets the amount of data to be transferred. The target must latch data on the first clock
IRDY# is asserted for each piece of data transferred.

 During the address phase, C/BE[3::0]# = 0001 (Special Cycle command) and
AD[31::00] are driven to random values and must be ignored. During the data phase,
C/BE[3::0]# are asserted and AD[31::00] are as follows:

 AD[15::00]

 AD[31::16]

 Encoded message

 Message dependent (optional) data field

 The PCI bus sequencer starts this command like all others and terminates it with a
Master-Abort. The hardware application provides all the information like any other
command and starts the bus sequencer. When the sequencer reports that the access
terminated with a Master-Abort, the hardware application knows the access completed.
In this case, the Received Master Abort bit in the configuration Status register
(Section 6.2.3.) must not be set. The quickest a Special Cycle command can complete is
five clocks. One additional clock is required for the turnaround cycle before the next
access. Therefore, a total of six clocks is required from the beginning of a Special Cycle
command to the beginning of another access.

 There are a total of 64 K messages. The message encodings are defined and described in
Appendix A.

 3.6.3. IDSEL Stepping

 The ability of an agent to spread assertion of qualified signals over several clocks is
referred to as stepping. All agents must be able to handle IDSEL stepping while
generating it is optional. Refer to Section 4.2.4. for conditions associated with
indeterminate signal levels on the rising edge of CLK.

 Stepping is only permitted on IDSEL pins as a result of being driven by an AD signal
through a series resistor. IDSEL is qualified by the combination of FRAME# and a
decoded Type 0 configuration command.

Revision 2.3

92

 Figure 3-18 illustrates a master delaying the assertion of FRAME# until it has driven the
AD lines and the associated IDSEL. The master is both permitted and required to drive
AD and C/BE# once ownership has been granted and the bus is in the Idle state.
However, by delaying assertion of FRAME#, the master runs the risk of losing its turn
on the bus. As with any master, GNT# must be asserted on the rising clock edge before
FRAME# is asserted. If GNT# were deasserted, on the clock edges marked "A", the
master is required to immediately tri-state its signals because the arbiter has granted the
bus to another agent. (The new master would be at a higher priority level.) If GNT#
were deasserted on the clock edges marked "B" or "C", FRAME# will have already been
asserted and the transaction continues.

CLK
1 2 3 4 5 7 8 96

GNT#

FRAME#

IRDY#

A A CB

AD

IDSEL

ADDRESS DATA

 Figure 3-18: IDSEL Stepping

Revision 2.3

93

 3.6.4. Interrupt Acknowledge

 The PCI bus supports an Interrupt Acknowledge cycle as shown in Figure 3-19. This
figure illustrates an x86 Interrupt Acknowledge cycle on PCI where a single byte enable
is asserted and is presented only as an example. In general, the byte enables determine
which bytes are involved in the transaction. During the address phase, AD[31::00] do
not contain a valid address but must be driven with stable data, PAR is valid, and parity
may be checked. An Interrupt Acknowledge transaction has no addressing mechanism
and is implicitly targeted to the interrupt controller in the system. As defined in the PCI-
to-PCI Bridge Architecture Specification, the Interrupt Acknowledge command is not
forwarded to another PCI segment. The Interrupt Acknowledge cycle is like any other
transaction in that DEVSEL# must be asserted one, two, or three clocks after the
assertion of FRAME# for positive decode and may also be subtractively decoded by a
standard expansion bus bridge. Wait states can be inserted and the request can be
terminated, as discussed in Section 3.3.3.2. The vector must be returned when TRDY#
is asserted.

FRAME#

CLK

TRDY#

IRDY#

AD

C/BE#

1 2 3 4 5

VECTOR

BE#'s (1110)INT-ACK

NOT
VALID

 Figure 3-19: Interrupt Acknowledge Cycle

 Unlike the traditional 8259 dual cycle acknowledge, PCI runs a single cycle
acknowledge. Conversion from the processor's two cycle format to the PCI one cycle
format is easily done in the bridge by discarding the first Interrupt Acknowledge request
from the processor.

 3.7. Error Functions
 PCI provides for parity and other system errors to be detected and reported. A single
system may include devices that have no interest in errors (particularly parity errors) and
agents that detect, signal, and recover from errors. PCI error reporting allows agents that
recover from parity errors to avoid affecting the operation of agents that do not. To
allow this range of flexibility, the generation of parity is required on all transactions by
all agents. The detection and reporting of errors is generally required, with limited
exclusions for certain classes of PCI agents as listed in Section 3.7.2.

Revision 2.3

94

 3.7.1. Parity Generation

 Parity on PCI provides a mechanism to determine for each transaction if the master is
successful in addressing the desired target and if data transfers correctly between them.
To ensure that the correct bus operation is performed, the four command lines are
included in the parity calculation. To ensure that correct data is transferred, the four byte
enables are also included in the parity calculation. The agent that is responsible for
driving AD[31::00] on any given bus phase is also responsible for driving even parity
on PAR. The following requirements also apply when the 64-bit extensions are used
(refer to Section 3.8. for more information).

 During address and data phases, parity covers AD[31::00] and C/BE[3::0]# lines
regardless of whether or not all lines carry meaningful information. Byte lanes not
actually transferring data are still required to be driven with stable (albeit meaningless)
data and are included in the parity calculation. During configuration, Special Cycle or
Interrupt Acknowledge transactions some (or all) address lines are not defined but are
required to be driven to stable values and are included in the parity calculation.

 Parity is generated according to the following rules:

 • Parity is calculated the same on all PCI transactions regardless of the type or form.

 • The number of "1"s on AD[31::00], C/BE[3::0]#, and PAR equals an even
number.

 • Parity generation is not optional; it must be done by all PCI-compliant devices.

 On any given bus phase, PAR is driven by the agent that drives AD[31::00] and lags
the corresponding address or data by one clock. Figure 3-20 illustrates both read and
write transactions with parity. The master drives PAR for the address phases on clocks
3 and 7. The target drives PAR for the data phase on the read transaction (clock 5) and
the master drives PAR for the data phase on the write transaction (clock 8). Note:
Other than the one clock lag, PAR behaves exactly like AD[31::00] including wait
states and turnaround cycles.

FRAME#

CLK

AD ADDRESS

1 2 3 4 5 6 7 8 9

DATA ADDRESS DATA

PAR

PERR#

 Figure 3-20: Parity Operation

Revision 2.3

95

 3.7.2. Parity Checking

 Parity must be checked to determine if the master successfully addressed the desired
target and if data transferred correctly. All devices are required to check parity, except
devices in the following two classes for which parity checking is optional:

 • Devices that are designed exclusively for use on the system board; e.g., chip sets.
System vendors have control over the use of these devices since they will never
appear on add-in cards.

 • Devices that never deal with or contain or access any data that represents permanent
or residual system or application state; e.g., human interface and video/audio
devices. These devices only touch data that is a temporary representation (e.g.,
pixels) of permanent or residual system or application state. Therefore, they are not
prone to create system integrity problems in the event of undetected failure.

 3.7.3. Address Parity Errors

 A device is said to have detected an address parity error if the device’s parity checking
logic detects an error in a single address cycle or either address phase of a dual address
cycle.

If a device detects an address parity error, in some cases, it will assert SERR# (refer to
Section 3.7.4.2.), and in all cases it will set the Detected Parity Error bit (Status register,
bit 15) (refer to Section 3.7.4.4.).

 If a device detects an address parity error, and the device’s Parity Error Response bit
(Command register, bit 6) is set, and the device’s address decoder indicates that the
device is selected, the device must do one of the following:

• claim the transaction and terminate it as if there was no address/command error.

• claim the transaction and terminate with Target-Abort.

• not claim the transaction and let it terminate with Master-Abort.

 An error in the address phase of a transaction may affect any or all of the address bits,
the command bits, and the parity bit. Since devices monitoring the transaction cannot
determine which bits are actually in error, use of a transaction that contained an address
parity error may cause unpredictable results.

 The target is not allowed to claim a transaction and terminate it with Retry solely
because of an address parity error or a write21 data parity error. However, the
occurrence of a parity error does not prevent the target from terminating the transaction
with Retry for other reasons.

 3.7.4. Error Reporting

 PCI provides for the detection and signaling of two kinds of errors: data parity errors and
other system errors. It is intended that data parity errors be reported up through the
access and device driver chain whenever possible. This error reporting chain from target

 21 Targets check data parity only on write transactions.

Revision 2.3

96

to bus master to device driver to device manager to operating system is intended to allow
error recovery options to be implemented at any level. Since it is generally not possible
to associate system errors with a specific access chain, they are reported via a separate
system error signal (refer to Section 3.7.4.2.).

 PCI devices are enabled to report data parity errors by the Parity Error Response bit
(bit 6 of the Command register). This bit is required in all devices except those not
required to check parity (refer to Section 3.7.2.). If the Parity Error Response bit is set,
devices must respond to and report data parity errors for all bus operations (except those
that occur during a Special Cycle transaction). If the Parity Error Response bit is
cleared, an agent that detects a data parity error must ignore the error and complete the
transaction as though parity was correct. In this case, no special handling of the data
parity error can occur.

 Two signals (pins) and two status bits are used in the PCI error reporting scheme. Each
will be discussed separately.

 3.7.4.1. Data Parity Error Signaling on PERR#

 PERR# is used for signaling data parity errors on all transactions except Special Cycle
transactions. Data parity errors that occur during a Special Cycle transaction are
reported on SERR# as described in Section 3.7.4.2. PERR# is required for all devices
except those not required to check parity (refer to Section 3.7.2.).

 If parity error response is enabled (bit 6 of the Command register is set) and a data parity
error is detected by a master during a read transaction, the master must assert PERR#.
If parity error response is enabled (bit 6 of the Command register is set) and a data parity
error is detected by a target during a write transaction, the target must assert PERR#.
Masters use this information to record the occurrence of the error for the device driver.
PERR# is both an input and output signal for a master and only an output signal for a
target.

 A device asserting PERR# must do so two clocks after the completion of a data phase
in which an error occurs, as shown in Figure 3-20. If the receiving agent inserts wait
states, that agent is permitted to assert PERR# as soon as a data parity error is detected.
In other words, if the target is inserting wait states during a write transaction, the target
is permitted to assert PERR# two clocks after data is valid (IRDY# asserted) but
before the data transfers (TRDY# is also asserted). If the master is inserting wait states
during a read transaction, the master is permitted to assert PERR# two clocks after data
is valid (TRDY# is asserted) but before the data transfers (IRDY# is also asserted).
Once PERR# is asserted, it must remain asserted until two clocks following the
completion of the data phase (IRDY# and TRDY# both asserted). Note that the master
is required to provide valid byte enables during every clock cycle of every data phase for
both read and write transactions independent of IRDY#.

 If a master asserts PERR# prior to completion of a read data phase, it must eventually
assert IRDY# to complete the data phase. If a target asserts PERR# prior to
completion of a write data phase, it must eventually assert TRDY# to complete the data
phase. The target cannot terminate the data phase by signaling Retry, Disconnect
without data, or Target-Abort after signaling PERR#. A master knows a data parity
error occurred on a write data phase anytime PERR# is asserted, which may be prior to

Revision 2.3

97

the completion of the data phase. But the master only knows the data phase was error
free two clocks following the completion of the data phase.

 Both masters and targets are permitted either to continue a burst transaction or stop it
after detecting a data parity error. During a burst transaction in which multiple data
phases are completed without intervening wait states, PERR# will be qualified on
multiple consecutive clocks accordingly and may be asserted in any or all of them.

 PERR# is a sustained tri-state signal that is bused to all PCI agents. It must be actively
driven to the correct value on each qualified clock edge by the agent receiving the data.
At the end of each bus operation, PERR# must actively be driven high for one clock
period by the agent receiving data, starting two clocks after the AD bus turnaround cycle
(e.g., clock 7 in Figure 3-20). The PERR# turnaround cycle occurs one clock later
(clock 8 in Figure 3-20). PERR# cannot be driven (enabled) for the current transaction
until at least three clocks after the address phase (which is one clock long for single
address cycles and two clocks long for dual address cycles). Note that the target of a
write transaction must not drive any signal until after asserting DEVSEL#; for
example, for decode speed “slow” the target must not drive PERR# until four clocks
after the address phase.

 3.7.4.2. Other Error Signaling on SERR#

 If a device is enabled to assert SERR# (i.e., SERR# Enable, bit 8 of the Command
register, is set), and the device’s Parity Error Response bit (Command register, bit 6) is
set, the device must assert SERR# if any of the following conditions occurs:

• The device’s parity checking logic detects an error in a single address cycle or either
address phase of a dual address cycle (regardless of the intended target).

• The device monitors Special Cycle transactions, and the Special Cycles bit
(Command register, bit 3) is set, and the device’s parity checking logic detects a data
parity error.

Refer to Section 6.8.2.1. for the cases in which a device must assert SERR# if that
device is the master of a Message Signaled Interrupt transaction resulting in PERR#
assertion, a Master-Abort, or a Target-Abort.

 SERR# may optionally be used to report other internal errors that might jeopardize
system or data integrity. It must be assumed, however, that signaling on SERR# will
generate a critical system interrupt (e.g., NMI or Machine Check) and is, therefore, fatal.
Consequently, care should be taken in using SERR# to report non-parity or system
errors.

 SERR# is required for all devices except those not required to check parity (refer to
Section 3.7.2.). SERR# is an open drain signal that is wire-ORed with all other PCI
agents and, therefore, may be simultaneously driven by multiple agents. An agent
reporting an error on SERR# drives it active for a single clock and then tri-states it.
(Refer to Section 2.2.5. for more details.) Since open drain signaling cannot guarantee
stable signals on every rising clock edge, once SERR# is asserted its logical value must
be assumed to be indeterminate until the signal is sampled in the deasserted state on at
least two successive rising clock edges.

Revision 2.3

98

 3.7.4.3. Master Data Parity Error Status Bit

 The Master Data Parity Error bit (Status register, bit 8) must be set by the master if its
Parity Error Response bit (Command register, bit 6) is set and either of the following two
conditions occurs:

• The master detects a data parity error on a read transaction.

• The master samples PERR# asserted on a write transaction.

 If the Parity Error Response bit is cleared, the master must not set the Master Data Parity
Error bit, even if the master detects a parity error or the target asserts PERR#.

 Targets never set the Master Data Parity Error bit.

 3.7.4.4. Detected Parity Error Status Bit

 The Detected Parity Error bit (Status register, bit 15) must be set by a device whenever
its parity checking logic detects a parity error, regardless of the state the Parity Error
Response bit (bit 6 of the command register). The Detected Parity Error bit is required
to be set by the device when any of the following conditions occurs:

• The device’s parity checking logic detects an error in a single address cycle or either
address phase of a dual address cycle.

• The device’s parity checking logic detects a data parity error and the device is the
target of a write transaction.

• The device’s parity checking logic detects a data parity error and the device is the
master of a read transaction.

3.7.5. Delayed Transactions and Data Parity Errors

This section presents additional requirements for error handling that are unique to a
target completing a transaction as a Delayed Transaction. Data parity error requirements
presented in previous sections apply to Delayed Transactions as well.

A data parity error can occur during any of the three steps of a Delayed Transaction, the
master request step, the target completion step, or the master completion step (refer to
Section 3.3.3.3.1.). The requirements for handling the error vary depending upon the
step in which the error occurred. Errors that occur during the target completion phase
are specific to the target device and are handled in a device-specific manner (not
specified here). 22 Device behavior for errors that occur during the master request step or

22 If the actual target resides on a PCI bus segment generated by a PCI-to-PCI bridge, the target completion
phase occurs across a PCI bus segment. In this case, the PCI-to-PCI Bridge Architecture Specification
details additional requirements for error handling during the target completion phase of a read Delayed
Transaction.

Revision 2.3

99

master completion step depend upon whether the Delayed Transaction is a read23 or a
write24 transaction.

During a read transaction, the target device sources the data, and parity is not valid until
TRDY# is asserted. Therefore, a data parity error cannot occur during the master
request phase or any subsequent reattempt by the master that is terminated with Retry.
During the master completion step of read transaction, the target sources data and data
parity and the master checks parity and conditionally asserts PERR# as for any other
(not delayed) transaction (refer to Section 3.7.4.).

During a write transaction, the master sources the write data and must assert IRDY#
when the data is valid independent of the response by the target device (refer to
Section 3.2.1.). Therefore, a data parity error may occur both in the master request and
the master completion steps. In addition, it is possible for a data parity error to be either
constant (i.e., the same error occurs each time the master repeats the transaction) or
transient (i.e., the error occurs on some but not other repetitions of the transaction by the
master). The data parity error reporting methods for write Delayed Transactions
described in the following sections are designed to detect and report both constant and
transient data parity errors, and to prevent transient data parity errors from causing a
deadlock condition.

If a target detects a data parity error on a write transaction that would otherwise have
been handled as a Delayed Transaction, the target is required to do the following:

1. Complete the data phase in which the error occurred by asserting TRDY#. If the
master is attempting a burst, the target must also assert STOP#.

2. Report the error as described in Section 3.7.4.1.

3. Discard the transaction. No Delayed Write Request is enqueued, and no Delayed
Write Completion is retired.

If the target detects a data parity error during the initial request phase of a Delayed Write
Transaction, no Delayed Request is ever enqueued.

If the target enqueues a good Delayed Write Request and later detects a data parity error
during a subsequent repetition of the transaction, the target does not retire any Delayed
Write Completions, even if the transaction appears to match one previously enqueued.
(It is impossible to determine whether the transaction really matches a previously
enqueued one, since an error is present.) This causes the target to have an orphan
Delayed Write Completion, because the master believes the transaction has completed,
but the target is waiting for the original (error free) request to be repeated. The orphan
completion is discarded when the target’s Discard Timer expires (refer to
Section 3.3.3.3.3.). While waiting for the discard timer to expire, some target
implementations will not be able to accept a new Delayed Transaction, since the target is
not required to handle multiple Delayed Transactions at the same time. However, since
this condition is temporary, a deadlock cannot occur. While in this condition, the device
is required to complete transactions that use memory write25 commands (refer to
Section 3.3.3.3.4.).

23 Memory Read, Memory Read Line, Memory Read Multiple, Configuration Read, I/O Read, or Interrupt
Acknowledge.

24 Configuration Write or I/O Write, but never Memory Write and Invalidate or Memory Write.

25 This includes two commands: Memory Write and Invalidate and Memory Write.

Revision 2.3

100

3.7.6. Error Recovery

The action that a system takes as a result of the assertion of SERR# is not controlled by
this specification. The assertion of SERR# by a device indicates that the device has
encountered an error from which it cannot recover. The system may optionally stop
execution at that point, if it does not have enough information to contain and recover
from the error condition.

The PCI parity error signals and status bits are designed to provide a method for data
parity errors to be detected and reported (if enabled). On a write transaction, the target
always signals data parity errors back to the master on PERR#. On a read transaction,
the master asserts PERR# to indicate to the system that an error was detected. In both
cases, the master has the ability to promote the error to its device driver or the operating
system or to attempt recovery using hardware and/or software methods.

The system designer may elect to report all data parity errors to the operating system by
asserting SERR# when the central resource samples PERR# asserted. Note that when
this option is used, recovery is not possible.

Implementation Note: Recovery from Data Parity Errors

It is optional for PCI masters and systems to attempt recovery from data parity errors.
The following are examples of how data parity error recovery may be attempted:

• Recovery by the master. If the master of the transaction in which the parity error
was detected has sufficient knowledge that the transaction can be repeated without
side-effects, then the master may simply repeat the transaction. If no error occurs on
the repeated transaction, reporting of the parity error (to the operating system or
device driver) is unnecessary. If the error persists, or if the master is not capable of
recovering from the data parity error, the master must inform its device driver. This
can be accomplished by generating an interrupt, modifying a status register, setting a
flag, or other suitable means. When the master does not have a device driver, it may
report the error by asserting SERR#.

Note: Most devices have side-effects when accessed, and, therefore, it is unlikely
that recovery is possible by simply repeating a transaction. However, in applications
where the master understands the behavior of the target, it may be possible to
recover from the error by repetition of the transaction.

• Recovery by the device driver. The device driver may support an error recovery
mechanism such that the data parity error can be corrected. In this case, the
reporting of the error to the operating system is not required. For example, the
driver may be able to repeat an entire block transfer by reloading the master with the
transfer size, source, and destination addresses of the data. If no error occurs on the
repeated block transfer, then the error is not reported. When the device driver does
not have sufficient knowledge that the access can be repeated without side-effects, it
must report the error to the operating system.

• Recovery (or error handling) by the operating system. Once the data parity error
has been reported to the operating system, no other agent or mechanism can recover
from the error. How the operating system handles the data parity error is operating
system dependent.

Revision 2.3

101

3.8. 64-Bit Bus Extension
PCI supports a high 32-bit bus, referred to as the 64-bit extension to the standard low
32-bit bus. The 64-bit bus provides additional data bandwidth for agents that require it.
The high 32-bit extension for 64-bit devices needs an additional 39 signal pins:
REQ64#, ACK64#, AD[63::32], C/BE[7::4]#, and PAR64. These signals are defined
in Section 2.2.8. 32-bit agents work unmodified with 64-bit agents. 64-bit agents must
default to 32-bit mode unless a 64-bit transaction is negotiated. Hence, 64-bit
transactions are totally transparent to 32-bit devices. Note: 64-bit addressing does not
require a 64-bit data path (refer to Section 3.9.).

64-bit transactions on PCI are dynamically negotiated (once per transaction) between the
master and target. This is accomplished by the master asserting REQ64# and the target
responding to the asserted REQ64# by asserting ACK64#. Once a 64-bit transaction is
negotiated, it holds until the end of the transaction. ACK64# must not be asserted
unless REQ64# was sampled asserted during the same transaction. REQ64# and
ACK64# are externally pulled up to ensure proper behavior when mixing 32- and 64-bit
agents. Refer to Section 3.8.1. for the operation of 64-bit devices in a 32-bit system.

During a 64-bit transaction, all PCI protocol and timing remain intact. Only memory
transactions make sense when doing 64-bit data transfers. Interrupt Acknowledge and
Special Cycle26 commands are basically 32-bit transactions and must not be used with a
REQ64#. The bandwidth requirements for I/O and configuration transactions cannot
justify the added complexity, and, therefore, only memory transactions support 64-bit
data transfers.

All memory transactions and other bus transfers operate the same whether data is
transferred 32 or 64 bits at a time. 64-bit agents can transfer from one to eight bytes per
data phase, and all combinations of byte enables are legal. As in 32-bit mode, byte
enables may change on every data phase. The master initiating a 64-bit data transaction
must use a double DWORD (Quadword or 8 byte) referenced address (AD[2] must be
"0" during the address phase).

When a master requests a 64-bit data transfer (REQ64# asserted), the target has three
basic responses and each is discussed in the following paragraphs.

1. Complete the transaction using the 64-bit data path (ACK64# asserted).

2. Complete the transaction using the 32-bit data path (ACK64# deasserted).

3. Complete a single 32-bit data transfer (ACK64# deasserted, STOP# asserted).

The first option is where the target responds to the master that it can complete the
transaction using the 64-bit data path by asserting ACK64#. The transaction then
transfers data using the entire data bus and up to 8 bytes can be transferred in each data
phase. It behaves like a 32-bit bus except more data transfers each data phase.

The second option occurs when the target cannot perform a 64-bit data transfer to the
addressed location (it may be capable in a different space). In this case, the master is
required to complete the transaction acting as a 32-bit master and not as a 64-bit master.
The master has two options when the target does not respond by asserting ACK64#
when the master asserts REQ64# to start a write transaction. The first option is that the
master quits driving the upper AD lines and only provides data on the lower 32 AD lines.

26 Since no agent claims the access by asserting DEVSEL# and, therefore, cannot respond with ACK64#.

Revision 2.3

102

The second option is the master continues presenting the full 64 bits of data on each even
DWORD address boundary. On the odd DWORD address boundary, the master drives
the same data on both the upper and lower portions of the bus.

The third and last option is where the target is only 32 bits and cannot sustain a burst for
this transaction. In this case, the target does not respond by asserting ACK64#, but
terminates the transaction by asserting STOP#. If this is a Retry termination (STOP#
asserted and TRDY# deasserted) the master repeats the same request (as a 64-bit
request) at a later time. If this is a Disconnect termination (STOP# and TRDY#
asserted), the master must repeat the request as a 32-bit master since the starting address
is now on a odd DWORD boundary. If the target completed the data transfer such that
the next starting address would be a even DWORD boundary, the master would be free
to request a 64-bit data transfer. Caution should be used when a 64-bit request is
presented and the target transfers a single DWORD as a 32-bit agent. If the master were
to continue the burst with the same address, but with the lower byte enables deasserted,
no forward progress would be made because the target would not transfer any new data,
since the lower byte enables are deasserted. Therefore, the transaction would continue to
be repeated forever without making progress.

64-bit parity (PAR64) works the same for the high 32-bits of the 64-bit bus as the 32-bit
parity (PAR) works for the low 32-bit bus. PAR64 covers AD[63::32] and
C/BE[7::4]# and has the same timing and function as PAR. (The number of "1"s on
AD[63::32], C/BE[7::4]#, and PAR64 equal an even number). PAR64 must be valid
one clock after each address phase on any transaction in which REQ64# is asserted.
(All 64-bit targets qualify address parity checking of PAR64 with REQ64#.) 32-bit
devices are not aware of activity on 64-bit bus extension signals.

For 64-bit devices checking parity on data phases, PAR64 must be additionally qualified
with the successful negotiation of a 64-bit transaction. PAR64 is required for 64-bit
data phases; it is not optional for a 64-bit agent.

In the following two figures, a 64-bit master requests a 64-bit transaction utilizing a
single address phase. This is the same type of addressing performed by a 32-bit master
(in the low 4 GB address space). The first, Figure 3-21, is a read where the target
responds with ACK64# asserted and the data is transferred in 64-bit data phases. The
second, Figure 3-22, is a write where the target does not respond with ACK64# asserted
and the data is transferred in 32-bit data phases (the transaction defaulted to 32-bit
mode). These two figures are identical to Figures 3-5 and 3-6 except that 64-bit signals
have been added and in Figure 3-21 data is transferred 64-bits per data phase. The same
transactions are used to illustrate that the same protocol works for both 32- and 64-bit
transactions.

AD[63::32] and C/BE[7::4]# are reserved during the address phase of a single address
phase transaction. AD[63::32] contain data and C/BE[7::4]# contain byte enables for
the upper four bytes during 64-bit data phases of these transactions. AD[63::32] and
C/BE[7::4]# are defined during the two address phases of a dual address cycle (DAC)
and during the 64-bit data phases (refer to Section 3.9. for details).

Figure 3-21 illustrates a master requesting a 64-bit read transaction by asserting
REQ64# (which exactly mirrors FRAME#). The target acknowledges the request by
asserting ACK64# (which mirrors DEVSEL#). Data phases are stretched by both
agents deasserting their ready lines. 64-bit signals require the same turnaround cycles as
their 32-bit counterparts.

Revision 2.3

103

FRAME#

CLK

TRDY#

IRDY#

AD[31::00]

DEVSEL#

C/BE[3::0]#

ADDRESS

BUS CMD

DATA-3

BE#'s

1 2 3 4 5 6 7 8 9

D
AT

A
TR

AN
SF

ER

D
AT

A
 T

R
AN

SF
E

R

D
AT

A
TR

AN
SF

ER

 W
AI

T

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

 W
AI

T

DATA
PHASE

 W
AI

T

DATA-2

BE#'s

DATA-1 DATA-5

DATA-6DATA-4

REQ64#

AD[63::32]

C/BE[7::4]#

ACK64#

Figure 3-21: 64-bit Read Request With 64-bit Transfer

Figure 3-22 illustrates a master requesting a 64-bit transfer. The 32-bit target is not
connected to REQ64# or ACK64#, and ACK64# is kept in the deasserted state with a
pull-up. As far as the target is concerned, this is a 32-bit transfer. The master converts
the transaction from 64- to 32-bits. Since the master is converting 64-bit data transfers
into 32-bit data transfers, there may or may not be any byte enables asserted during any
data phase of the transaction. Therefore, all 32-bit targets must be able to handle data
phases with no byte enables asserted. The target should not use Disconnect or Retry
because a data phase is encountered that has no asserted byte enables, but should assert
TRDY# and complete the data phase. However, the target is allowed to use Retry or
Disconnect because it is internally busy and unable to complete the data transfer
independent of which byte enables are asserted. The master resends the data that
originally appeared on AD[63::32] during the first data phase on AD[31::00] during the
second data phase. The subsequent data phases appear exactly like the 32-bit transfer.
(If the 64-bit signals are removed, Figure 3-22 and Figure 3-6 are identical.)

Revision 2.3

104

FRAME#

CLK

TRDY#

IRDY#

AD[31::00]

DEVSEL#

C/BE[3::0]#

ADDRESS

BUS CMD

1 2 3 4 5 6 7 8 9

ADDRESS
PHASE

DATA
PHASE

D
A

TA
 T

R
A

N
S

FE
R

D
AT

A
TR

AN
SF

ER

 W
A

IT

 W
A

IT

 W
AI

T

D
AT

A
TR

AN
SF

ER

DATA-2

DATA-1 DATA-2 DATA-3

C/BE[7::4]#

AD[63::32]

REQ64#

ACK64#

BE#'s-2 BE#'s-3BE#'s-1

BE#'s-2

DATA
PHASE

DATA
PHASE

Figure 3-22: 64-bit Write Request With 32-bit Transfer

Using a single data phase with 64-bit transfers may not be very effective. Since the
master does not know how the transaction will be resolved with ACK64# until
DEVSEL# is returned, it does not know the clock on which to deassert FRAME# for a
64-bit single data phase transaction. IRDY# must remain deasserted until FRAME#
signaling is resolved. The single 64-bit data phase may have to be split into two 32-bit
data phases when the target is only 32-bits, which means a two phase 32-bit transfer is at
least as fast as a one phase 64-bit transfer.

3.8.1. Determining Bus Width During System Initialization

REQ64# is used during reset to distinguish between parts that are connected to a 64-bit
data path, and those that are not. PCI expansion slots that support only a 32-bit data path
must not connect REQ64# to any other slots or devices. (The REQ64# and ACK64#
pins are located in the 32-bit portion of the connector.) Each 32-bit-only connector must
have an individual pull-up resistor for REQ64# on the system board. ACK64# is bused
to all 64-bit devices and slots on the system board and pulled up with a single resistor
located on the system board. ACK64# for each 32-bit slots must be deasserted either by
connecting it to the ACK64# signal connecting the 64-bit devices and slots or by
individual pull-up resistors on the system board.

Revision 2.3

105

REQ64# is bused to all devices on the system board (including PCI connector slots) that
support a 64-bit data path. This signal has a single pull-up resistor on the system board.
The central resource must drive REQ64# low (asserted) during the time that RST# is
asserted, according to the timing specification in Section 4.3.2. Devices that see
REQ64# asserted on the rising edge of RST# are connected to the 64-bit data path, and
those that do not see REQ64# asserted are not connected. This information may be
used by the component to stabilize floating inputs during runtime, as described below.

REQ64# has setup and hold time requirements relative to the deasserting (high-going)
edge of RST#. While RST# is asserted, REQ64# is asynchronous with respect to
CLK.

When a 64-bit data path is provided, AD[63::32], C/BE[7::4]#, and PAR64 require
either pull-up resistors or input "keepers," because they are not used in transactions with
32-bit devices and may, therefore, float to the threshold level causing oscillation or high
power drain through the input buffer. This pull-up or keeper function must be part of the
system board central resource, not the add-in card, (refer to Section 4.3.3.) to ensure a
consistent solution and avoid pull-up current overload.

When the 64-bit data path is present on a device but not connected (as in a 64-bit add-in
card plugged into a 32-bit PCI slot), that PCI device must insure that its inputs do not
oscillate, and that there is not a significant power drain through the input buffer both
before and after the rising edge of RST#. This can be done in a variety of ways; e.g.,
biasing the input buffer or actively driving the outputs continuously (since they are not
connected to anything). External resistors on an add-in card or any solution that violates
the input leakage specification are prohibited.

While RST# is asserted, the PCI device floats its output buffers for the extended data
path, AD[63::32], C/BE[7::4]#, and PAR64, unless the device input buffers cannot
tolerate their inputs floating for an indefinitely long RST# period. If the device input
buffers cannot tolerate this, the component must control its inputs while RST# is
asserted. In this case, the device is permitted to enable its outputs continuously while
RST# is asserted and REQ64# is deasserted (indicating a 32-bit bus), but must drive
them to a logic low level (in case the bus connection is actually 64-bits wide and
REQ64# has not yet settled to its final value). After the device detects that REQ64# is
deasserted at the rising edge of RST#, the device must continue to control the extended
bus to protect the device input buffers.

3.9. 64-bit Addressing
PCI supports memory addressing beyond the low 4 GB by defining a mechanism to
transfer a 64-bit address from the master of the transaction to the target. No additional
pins are required for a 32- or 64-bit device to support 64-bit addressing. Devices that
support only 32-bit addresses are mapped into the low 4 GB of the address space and
work transparently with devices that generate 64-bit addresses. Only memory
transactions support 64-bit addressing.

The width of the address is independent of the width of the bus on either the master or
the target. If both the master and target support a 64-bit bus, the entire 64-bit address
could theoretically be provided in a single clock. However, the master is required in all
cases to use two clocks to communicate a 64-bit address, since the width of the target’s
bus is not known during the address phase.

The standard PCI bus transaction supports a 32-bit address, Single Address Cycle (SAC),
where the address is valid for a single clock when FRAME# is first sampled asserted.

Revision 2.3

106

To support the transfer of a 64-bit address, a Dual Address Cycle (DAC) bus command
is used, accompanied with one of the defined bus commands to indicate the desired data
phase activity for the transaction. The DAC uses two clocks to transfer the entire 64-bit
address on the AD[31::00] signals. When a 64-bit master uses DAC (64-bit
addressing), it must provide the upper 32 bits of the address on AD[63::32] and the
associated command for the transaction on C/BE[7::4]# during both address phases of
the transaction to allow 64-bit targets additional time to decode the transaction.

Figure 3-23 illustrates a DAC for a read transaction. In a basic SAC read transaction, a
turnaround cycle follows the address phase. In the DAC read transaction, an additional
address phase is inserted between the standard address phase and the turnaround cycle.
In the figure, the first and second address phases occur on clock 2 and 3 respectively.
The turnaround cycle between the address and data phases is delayed until clock 4.
Note: FRAME# must be asserted during both address phases even for nonbursting
single data phase transactions. To adhere to the FRAME# - IRDY# relationship,
FRAME# cannot be deasserted until IRDY# is asserted. IRDY# cannot be asserted until
the master provides data on a write transaction or is ready to accept data on a read
transaction.

A DAC is decoded by a potential target when a "1101" is present on C/BE[3::0]# during
the first address phase. If a 32-bit target supports 64-bit addressing, it stores the address
that was transferred on AD[31::00] and prepares to latch the rest of the address on the
next clock. The actual command used for the transaction is transferred during the
second address phase on C/BE[3::0]#. A 64-bit target is permitted to latch the entire
address on the first address phase. Once the entire address is transferred and the
command is latched, the target determines if DEVSEL# is to be asserted. The target can
do fast, medium, or slow decode one clock delayed from SAC decoding. A subtractive
decode agent adjusts to the delayed device selection timing either by ignoring the entire
transaction or by delaying its own assertion of DEVSEL#. If the bridge does support
64-bit addressing, it will delay asserting its DEVSEL# (if it does support 64-bit
addressing). The master (of a DAC) will also delay terminating the transaction with
Master-Abort for one additional clock.

The execution of an exclusive access is the same for either DAC or SAC. In either case,
LOCK# is deasserted during the address phase (first clock) and asserted during the
second clock (which is the first data phase for SAC and the second address phase for a
DAC). Agents monitoring the transaction understand the lock resource is busy, and the
target knows the master is requesting a locked operation. For a target that supports both
SAC and DAC, the logic that handles LOCK# is the same.

Revision 2.3

107

FRAME#

CLK

TRDY#

IRDY#

AD[31::00]

DEVSEL#

C/BE[3::0]# BUS CMD BE#[3::0]

1 2 3 4 5 6 7 8

ADDRESS
PHASE

DATA
PHASE

DATA
PHASE

DATA-2

BE#[7::4]

DATA-4AD[63::32]

C/BE[7::4]#

HI - ADDRLO - ADDR DATA-3(2)DATA-1

 HI ADDR

DUAL AD

BUS CMD

 W
AI

T

F M S

D
AT

A
TR

AN
SF

ER

D
A

TA
 T

R
AN

SF
E

R

Optional

 W
AI

T

Figure 3-23. 64-Bit Dual Address Read Cycle

The master communicates a 64-bit address as shown in Figure 3-23, regardless of
whether the target supports a 32-bit or 64-bit bus. The shaded area in Figure 3-23 is
used only when the master of the access supports a 64-bit bus. The master drives the
entire address (lower address on AD[31::00] and upper address on AD[63::32]) and
both commands (DAC "1101" on C/BE[3::0]# and the actual bus command on
C/BE[7::4]#), all during the initial address phase. On the second address phase, the
master drives the upper address on AD[31::00] (and AD[63::32]) while the bus
command is driven on C/BE[3::0]# (and C/BE[7::4]#). The master cannot determine
if the target supports a 64-bit data path until the entire address has been transferred and,
therefore, must assume a 32-bit target while providing the address.

If both the master and target support a 64-bit bus, then 64-bit addressing causes no
additional latency when determining DEVSEL#, since all required information for
command decoding is supplied in the first address phase. For example, a 64-bit target
that normally performs a medium DEVSEL# decode for a SAC can decode the full
64-bit address from a 64-bit master during the first address phase of the DAC and
perform a fast DEVSEL# decode. If either the master or the target does not support a
64-bit data path, one additional clock of delay will be encountered.

A master that supports 64-bit addressing must generate a SAC, instead of a DAC, when
the upper 32 bits of the address are zero. This allows masters that generate 64-bit
addresses to communicate with 32-bit addressable targets via SAC. The type of
addressing (SAC or DAC) depends on whether the address is in the low 4-GB address
range or not, and not by the target's bus width capabilities.

Revision 2.3

108

A 64-bit addressable target must act like a 32-bit addressable target (respond to SAC
transactions) when mapped in the lower 4 GB address space. If a 32-bit master must
access targets mapped above the lower 4 GB address space, that master must support
64-bit addressing using DAC.

3.10. Special Design Considerations
This section describes topics that merit additional comments or are related to PCI but are
not part of the basic operation of the bus.

1. Third party DMA
Third party DMA is not supported on PCI since sideband signals are not supported
on the connector. The intent of PCI is to group together the DMA function in
devices that need master capability and, therefore, third party DMA is not supported.

2. Snooping PCI transactions
Any transaction generated by an agent on PCI may be snooped by any other agent on
the same bus segment. Snooping does not work when the agents are on different
PCI bus segments. In general, the snooping agent cannot drive any PCI signal, but
must be able to operate independently of the behavior of the current master or target.

3. Illegal protocol behavior
A device is not encouraged actively to check for protocol errors. However, if a
device does detect illegal protocol events (as a consequence of the way it is
designed), the design may return its state machines (target or master) to an Idle state
as quickly as possible in accordance with the protocol rules for deassertion and tri-
state of signals driven by the device.

4. VGA palette snoop
The active VGA device always responds to a read of the color palette, while either
the VGA or graphics agent will be programmed to respond to write transactions to
the color palette and the other will snoop it. When a device (VGA or graphics) has
been programmed to snoop a write to the VGA palette register, it must only latch the
data when IRDY# and TRDY# are both asserted on the same rising clock edge or
when a Master-Abort occurs. The first option is the normal case when a VGA and
graphics device are present in the same system. The second option occurs when no
device on the current bus has been programmed to positively respond to this range of
addresses. This occurs when the PCI segment is given the first right of refusal and a
subtractive decode device is not present. In some systems, this access is still
forwarded to another bus which will complete the access. In this type of system, a
device that has been programmed to snoop writes to the palette should latch the data
when the transaction is terminated with Master-Abort.

The palette snoop bit will be set by the system BIOS when it detects both a VGA
device and a graphics accelerator device that are on separate add-in cards on the
same bus or on the same path but on different buses.

• When both agents are PCI devices that reside on the same bus, either device can
be set to snoop and the other will be set to positively respond.

• When both are PCI devices that reside on different buses but on the same path,
the first device found in the path will be set to snoop and the other device may
be set to positively respond or snoop the access. (Either option works in a PC-
AT compatible system since a write transaction on a PCI segment, other than the

Revision 2.3

109

primary PCI bus, that is terminated with Master-Abort is simply terminated and
the data is dropped and Master-Aborts are not reported.)

• When one device is on PCI and the other is behind the subtractive decode
device, the PCI device will be set to snoop and the subtractive decode device
will automatically claim the access and forward it.

The only case where palette snooping would be turned off is when only a VGA
device (no graphics device) is present in the system, or both the VGA and graphics
devices are integrated together into single device or add-in card.

Note: Palette snooping does not work when the VGA and graphics devices reside on
different buses that are not on the same path. This occurs because only a single
agent per bus segment may claim the access. Therefore, one agent will never see the
access because its bridge cannot forward the access. When a device has been
programmed to snoop the access, it cannot insert wait states or delay the access in
any way and, therefore, must be able to latch and process the data without delay.

For more information on PCI support of VGA devices, refer to Appendix A of the
PCI-to-PCI Bridge Architecture Specification.

5. Potential deadlock scenario when using PCI-to-PCI bridges
Warning: A potential deadlock will occur when all the following conditions exist in
a system:

1. When PCI-to-PCI bridges are supported in the system. (Note: If an add-in card
connector is supported, PCI-to-PCI bridges may be present in the system.)

2. A read access originated by the host bridge targets a PCI device that requires
more than a single data phase to complete. (Eight-byte transfer or an access that
crosses a DWORD boundary when targeting an agent that responds to this
request as 32-bit agent or resides on a 32-bit PCI segment.)

The deadlock occurs when the following steps are met:

1. A burst read is initiated on PCI by the host bridge and only the first data phase
completes. (This occurs because either the target or the PCI-to-PCI bridge in the
path terminates the request with Disconnect.)

2. The request passes through a PCI-to-PCI bridge and the PCI-to-PCI bridge
allows posted write data (moving toward main memory) after the initial read
completes.

3. The host bridge that originated the read request blocks the path to main memory.

The deadlock occurs because the PCI-to-PCI bridge cannot allow a read to
transverse it while holding posted write data. The host bridge that initiated the PCI
access cannot allow the PCI-to-PCI bridge to flush data until it completes the second
read, because there is no way to “back-off” the originating agent without losing data.
It must be assumed the read data was obtained from a device that has destructive
read side-effects. Therefore, discarding the data and repeating the access is not an
option.

If all these conditions are met, the deadlock will occur. If the system allows all the
conditions to exist, then the host bridge initiating the read request must use LOCK#
to guarantee that the read access will complete without the deadlock conditions
being met. The fact that LOCK# is active for the transaction causes the PCI-to-PCI
bridge to turn-off posting until the lock operation completes. (A locked operation
completes when LOCK# is deasserted while FRAME# is deasserted.)

Revision 2.3

110

Note: The use of LOCK# is only supported by PCI-to-PCI bridges moving
downstream (away from the processor). Therefore, this solution is only applicable to
host bus bridges.

Another deadlock that is similar to the above deadlock occurs doing an I/O Write
access that straddles an odd DWORD boundary. The same condition occurs as the
read deadlock when the host bridge cannot allow access to memory until the I/O
write completes. However, LOCK# cannot be used to prevent this deadlock since
locked accesses must be initiated with a read access.

6. Potential data inconsistency when an agent uses delayed transaction
termination

Delayed Completion transactions on PCI are matched by the target with the
requester by comparing addresses, bus commands, and byte enables, and if a write,
write data. As a result, when two masters access the same address with the same bus
command and byte enables, it is possible that one master will obtain the data
assuming that it is a read which was actually requested by the other master. In a
prefetchable region, this condition can occur even if the byte enables, and in some
cases, the commands of the two transactions do not match. A prefetchable region
can be defined by the target using range registers or by the master using the Memory
Read Line or Memory Read Multiple commands. Targets completing read accesses
in a prefetchable memory range ignore the byte enables and can also alias the
memory read commands when completing the delayed read request.

If no intervening write occurs between the read issued by the two masters, there is no
data consistency issue. However, if a master completes a memory write and then
requests a read of the same location, there is a possibility that the read will return a
snapshot of that location which actually occurred prior to the write (due to a Delayed
Read Request by another master queued prior to the write).

This is only a problem when multiple masters on one side of a bridge are polling the
same location on the other side of the bridge and one of the masters also writes the
location. Although it is difficult to envision a real application with these
characteristics, consider the sequence below:

1. Master A attempts a read to location X and a bridge responds to the request
using Delayed Transaction semantics (queues a Delayed Read Request).

2. The bridge obtains the requested read data and the Delayed Request is now
stored as a Delayed Completion in the bridge.

3. Before Master A is able to complete the read request (obtain the results stored in
the Delayed Completion in the bridge), Master B does a memory write to
Location X and the bridge posts the memory write transaction.

4. Master B then reads location X using the same address, byte enables, and bus
command as Master A’s original request. Note that if the transaction reads from
a prefetchable location, the two commands can be confused by the bridge even if
the byte enable patterns and read commands are different.

5. The bridge completes Master B’s read access and delivers read data which is a
snapshot of Location X prior to the memory write of Location X by Master B.

Since both transactions are identical, the bridge provides the data to the wrong
master. If Master B takes action on the read data, then an error may occur, since
Master B will see the value before the write. However, if the purpose of the read by
Master B was to ensure that the write had completed at the destination, no error

Revision 2.3

111

occurs and the system is coherent since the read data is not used (dummy read). If
the purpose of the read is only to flush the write posted data, it is recommended that
the read be to a different DWORD location of the same device. Then the reading of
stale data does not exist. If the read is to be compared to decide what to do, it is
recommended that the first read be discarded and the decision be based on the
second read.

The above example applies equally to an I/O controller that uses Delayed
Transaction termination. In the above example, replace the word "bridge" with "I/O
controller" and the same potential problem exists.

A similar problem can occur if the two masters are not sharing the same location, but
locations close to each other, and one master begins reading at a smaller address
than the one actually needed. If the smaller address coincides exactly with the
address of the other master’s read from the near location, then the two masters’ reads
can be swapped by a device using Delayed Transaction termination. If there is an
intervening write cycle, then the second master may receive stale data; i.e., the
results from the read which occurred before the write cycle. The result of this
example is the same as the first example since the start addresses are the same. To
avoid this problem, the master must address the data actually required and not start
at a smaller address.

In summary, this problem can only occur if two masters on one side of a bridge are
sharing locations on the other side of the bridge. Although typical applications are
not configured this way, the problem can be avoided if a master doing a read fetches
only the actual data it needs and does not prefetch data before the desired data, or if
the master does a dummy read after the write to guarantee that the write completes.

Another data inconsistency situation can occur when a single master changes its
behavior based on a new transaction it receives after having a request terminated
with Retry. The following sequence illustrates the data inconsistency:

1. A master is informed that pointer 1 at DWORD Location X is valid. (Pointer 2
at Location Y, the next sequential DWORD location, is not valid.)

2. The master initiates a memory read to Location X and is terminated with Retry.
(The master intends to read only pointer 1, since pointer 2 is invalid.)

3. The host bridge begins to fetch the contents of Location X as a Delayed
Transaction.

4. The host bridge completes the read request, prefetching beyond Location X to
include Location Y and places the Delayed Read Completion in the outbound
queue.

5. The CPU updates pointer 2 in Location Y in memory.

6. The CPU uses a memory write to inform the master that pointer 2 is valid. The
host bridge posts the memory write. Ordering rule number 7 in Appendix E
requires the host bridge to allow the posted memory write transaction to pass the
Delayed Read Completion of Location X (including the stale value from
Location Y).

7. The host bridge executes the posted memory write on the PCI bus informing the
master that pointer 2 in now valid.

Revision 2.3

112

8. The master repeats the original memory read to Location X, but because pointer
2 in now valid, it extends the transaction and obtains two DWORDS including
Location Y.

The data the master received from Location Y is stale. To prevent this data
inconsistency from occurring, the master is not allowed to extend a memory read
transaction beyond its original intended limits after it has been terminated with
Retry.

7. Peer-to-peer transactions crossing multiple host bridges

PCI host bridges may, but are not required to, support PCI peer-to-peer transactions
that traverse multiple PCI host bridges.

8. The effect of PCI-to-PCI bridges on the PCI clock specification

The timing parameters for CLK for PCI expansion connectors are specified at the
input of the device in the slot. Refer to Section 4.2.3.1. and Section 7.6.4.1. for more
information. Like all signals on the connector, only a single load is permitted on
CLK in each slot. An add-in card that uses several devices behind a PCI-to-PCI
bridge must accommodate the clock buffering requirements of that bridge. For
example, if the bridge’s clock buffer affects the duty cycle of CLK, the rest of the
devices on the add-in card must accept the different duty cycle. It is the
responsibility of the add-in card designer to choose components with compatible
CLK specifications.

The system must always guarantee the timing parameters for CLK specified in
Section 4.2.3.1. and Section 7.6.4.1. at the input of the device in a PCI expansion
slot, even if the system board places PCI slots on the secondary side of a PCI-to-PCI
bridge. It is the responsibility of the system board designer to choose clock sources
and PCI-to-PCI bridges that will guarantee this specification for all slots.

9. Devices cannot drive and receive signals at the same time

Bus timing requires that no device both drive and receive a signal on the bus at the
same time. System timing analysis considers the worst signal propagation case to be
when one device drives a signal and the signal settles at the input of all other devices
on the bus. In most cases, the signal will not settle at the driving device until some
time after it has settled at all other devices. Refer to Section 4.3.5. and Section 7.7.5.
for a description of Tprop.

Logic internal to a device must never use the signal received from the bus while that
device is driving the bus. If internal logic requires the state of a bus signal while the
device is driving the bus, that logic must use the internal signal (the one going to the
output buffer of the device) rather than the signal received from the device input
buffer. For example, if logic internal to a device continuously monitors the state of
FRAME# on the bus, that logic must use the signal from the device input buffer
when the device is not the current bus master, and it must use the internally
generated FRAME# when the device is the current bus master.

Revision 2.3

113

Chapter 4
Electrical Specification

4.1. Overview
This chapter defines all the electrical characteristics and constraints of PCI components,
systems, and add-in cards, including pin assignment on the add-in card connector, when
the operating frequency is at or below 33 MHz. Refer to the PCI-X Addendum to the PCI
Local Bus Specification for requirements when the operating frequency is above 33 MHz.
PCI-X is the preferred replacement of PCI when higher operating frequencies are
required. PCI-X is capable of supporting four add-in card slots at 66 MHz making it an
easier migration path than the two slot capability of 66 MHz PCI. This chapter is divided
into major sections covering integrated circuit components (Section 4.2.), systems or
system boards (Section 4.3.), and add-in cards (Section 4.4.). Each section contains the
requirements that must be met by the respective product, as well as the assumptions it
may make about the environment provided. While every attempt was made to make
these sections self-contained, there are invariably dependencies between sections so that
it is necessary that all vendors be familiar with all three areas. The PCI electrical
definition provides for both 3.3V and 5V signaling environments. These should not be
confused with 3.3V and 5V component technologies. A "3.3V component" can be
designed to work in a 5V signaling environment and vice versa; component technologies
can be mixed in either signaling environment. The signaling environments cannot be
mixed; all components on a given PCI bus must use the same signaling convention of
3.3V or 5V.

4.1.1. Transition Road Map

PCI is rapidly moving to the 3.3V signaling environment. PCI-X, Low Profile, Mini PCI,
and PCI 66 systems support only 3.3V signaling. PCI defines two system add-in card
connectors−one for the 3.3V signaling environment and one for the 5V signaling
environment−and two add-in card electrical types, as shown in Figure 4-1. In the interest
of facilitating the transition to the 3.3V signaling environment, the 5V keyed add-in card
is no longer supported. Support for the system 5V signaling environment is retained in
this specification for backward compatibility with the many 5V keyed add-in cards but is
expected to be removed from future versions of this specification. The connector keying
system prevents an add-in card from being inserted into an inappropriate slot.

The system board (including connectors) defines the signaling environment for the bus,
whether it be 3.3V or 5V. The 3.3V add-in card is designed to work only in the 3.3V
signaling environment. The Universal add-in card is capable of detecting the signaling
environment in use and adapting itself to that environment. It can, therefore, be plugged

Revision 2.3

114

into either connector type. Both add-in card types define connections to both 3.3V and
5V power supplies and may contain either 3.3V and/or 5V components. The distinction
between board types is the signaling protocol they use, not the power rails they connect to
nor the component technology they contain.

3.3 Volt Connector

3.3 Volt Add-in Card
I/O buffers powered on

3.3 volt rail

Dual Voltage Signaling
Add-in Card

I/O buffers powered on
connector dependent rail

5 Volt Connector

Figure 4-1: Add-in Card Connectors

PCI components on the Universal add-in card must use I/O buffers that can be compliant
with either the 3.3V or 5V signaling environment. While there are multiple buffer
implementations that can achieve this dual environment compliance, dual voltage buffers
capable of operating from either power rail can be used. They should be powered from
"I/O" designated power pins27 on PCI connectors that will always be connected to the
power rail associated with the signaling environment in use. This means that in the 3.3V
signaling environment, these buffers are powered on the 3.3V rail. When the same add-
in card is plugged into a 5V connector, these buffers are powered on the 5V rail. This
enables the Universal add-in card to be compliant with either signaling environment.

The intent of this transition approach is to require all add-in cards to support the 3.3V
signaling environment. This will ensure there will be an adequate selection of add-in
cards available when the systems move to the 3.3V signaling environment. Universal
add-in cards are supported and can be used in systems that provided only the 5V keyed
connectors.

27 When “5V tolerant” 3.3V parts are used on the Universal add-in card, its I/O buffers may optionally be
connected to the 3.3V rail rather than the "I/O" designated power pins; but high clamp diodes may still be
connected to the "I/O" designated power pins. (Refer to the last paragraph of Section 4.2.1.2. - "Clamping
directly to the 3.3V rail with a simple diode must never be used in the 5V signaling environment.") Since
the effective operation of these high clamp diodes may be critical to both signal quality and device
reliability, the designer must provide enough "I/O" designated power pins on a component to handle the
current spikes associated with the 5V maximum AC waveforms (Section 4.2.1.3.).

Revision 2.3

115

4.1.2. Dynamic vs. Static Drive Specification

The PCI bus has two electrical characteristics that motivate a different approach to
specifying I/O buffer characteristics. First, PCI is a CMOS bus, which means that steady
state currents (after switching transients have died out) are minimal. In fact, the majority
of the DC drive current is spent on pull-up resistors. Second, PCI is based on reflected
wave rather than incident wave signaling. This means that bus drivers are sized to only
switch the bus half way to the required high or low voltage. The electrical wave
propagates down the bus, reflects off the unterminated end and back to the point of
origin, thereby doubling the initial voltage excursion to achieve the required voltage
level. The bus driver is actually in the middle of its switching range during this
propagation time, which lasts up to 10 ns, one third of the bus cycle time at 33 MHz.

PCI bus drivers spend this relatively large proportion of time in transient switching, and
the DC current is minimal, so the typical approach of specifying buffers based on their
DC current sourcing capability is not useful. PCI bus drivers are specified in terms of
their AC switching characteristics rather than DC drive. Specifically, the voltage to
current relationship (V/I curve) of the driver through its active switching range is the
primary means of specification. These V/I curves are targeted at achieving acceptable
switching behavior in typical configurations of six loads on the system board and two
add-in card connectors or two loads on the system board and four add-in card connectors.
However, it is possible to achieve different or larger configurations depending on the
actual equipment practice, layout arrangement, loaded impedance of the system board,
etc.

4.2. Component Specification
This section specifies the electrical and timing parameters for PCI components; i.e.,
integrated circuit devices. Both 3.3V and 5V rail-to-rail signaling environments are
defined. The 3.3V environment is based on Vcc-relative switching voltages and is an
optimized CMOS approach. The 5V environment, on the other hand, is based on
absolute switching voltages in order to be compatible with TTL switching levels. The
intent of the electrical specification is that components connect directly together, whether
on the system board or an add-in card, without any external buffers.

These specifications are intended to provide a design definition of PCI component
electrical compliance and are not, in general, intended as actual test specifications. Some
of the elements of this design definition cannot be tested in any practical way but must be
guaranteed by design characterization. It is the responsibility of component designers
and ASIC vendors to devise an appropriate combination of device characterization and
production tests, correlated to the parameters herein, in order to guarantee the PCI
component complies with this design definition. All component specifications have
reference to a packaged component and, therefore, include package parasitics. Unless
specifically stated otherwise, component parameters apply at the package pins, not at bare
silicon pads28 nor at add-in card edge connectors.

The intent of this specification is that components operate within the "commercial" range
of environmental parameters. However, this does not preclude the option of other
operating environments at the vendor's discretion.

PCI output buffers are specified in terms of their V/I curves. Limits on acceptable V/I
curves provide for a maximum output impedance that can achieve an acceptable first step

28 It may be desirable to perform some production tests at bare silicon pads. Such tests may have different
parameters than those specified here and must be correlated back to this specification.

Revision 2.3

116

voltage in typical configurations and for a minimum output impedance that keeps the
reflected wave within reasonable bounds. Pull-up and pull-down sides of the buffer have
separate V/I curves, which are provided with the parametric specification. The effective
buffer strength is primarily specified by an AC drive point, which defines an acceptable
first step voltage, both high going and low going, together with required currents to
achieve that voltage in typical configurations. The DC drive point specifies steady state
conditions that must be maintained, but in a CMOS environment these are minimal and
do not indicate real output drive strength. The shaded areas on the V/I curves shown in
Figures 4-2 and 4-4 define the allowable range for output characteristics.

DC parameters must be sustainable under steady state (DC) conditions. AC parameters
must be guaranteed under transient switching (AC) conditions, which may represent up to
33% of the clock cycle. The sign on all current parameters (direction of current flow) is
referenced to a ground inside the component; that is, positive currents flow into the
component while negative currents flow out of the component. The behavior of reset
(RST#) is described in Section 4.3.2. (system specification) rather than in this
(component) section.

The optional PME# signal is unique because of its use when the system is in a low-
power state in which the PCI bus and all the peripherals attached to it will sometimes
have power removed. This requires careful design to ensure that a voltage applied to the
PME# pin will never cause damage to the part, even if the component’s Vcc pins are not
powered. Additionally, the device must ensure that it does not pull the signal to ground
unless the PME# signal is being intentionally asserted. See the PCI Power Management
Interface Specification for requirements for PME# in systems that support it.

Revision 2.3

117

4.2.1. 5V Signaling Environment

4.2.1.1. DC Specifications

Table 4-1 summarizes the DC specifications for 5V signaling.

Table 4-1: DC Specifications for 5V Signaling

Symbol Parameter Condition Min Max Units Notes

Vcc Supply Voltage 4.75 5.25 V

Vih Input High Voltage 2.0 Vcc+0.5 V

Vil Input Low Voltage -0.5 0.8 V

Iih Input High Leakage
Current

Vin = 2.7 70 µA 1

Iil Input Low Leakage
Current

Vin = 0.5 -70 µA 1

Voh Output High Voltage Iout = -2 mA 2.4 V

Vol Output Low Voltage Iout = 3 mA, 6 mA 0.55 V 2

Cin Input Pin Capacitance 10 pF 3

Cclk CLK Pin Capacitance 5 12 pF

CIDSEL IDSEL Pin Capacitance 8 pF 4

Lpin Pin Inductance 20 nH 5

IOff PME# input leakage Vo ≤ 5.25 V

Vcc off or floating

– 1 µA 6

NOTES:

1. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.

2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have
6 mA; the latter include, FRAME#, TRDY#, IRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, INTA#,
INTB#, INTC#, INTD#, and, when used, AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK, SMBDAT, and SMBCLK)
with an exception granted to system board-only devices up to 16 pF, in order to accommodate PGA
packaging. This means, in general, that components for add-in cards need to use alternatives to ceramic
PGA packaging (i.e., PQFP, SGA, etc.). Pin capacitance for SMBCLK and SMBDAT is not specified;
however, the maximum capacitive load is specified for the add-in card in Section 8.2.5.

4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].

5. This is a recommendation, not an absolute requirement. The actual value should be provided with the
component data sheet.

6. This input leakage is the maximum allowable leakage into the PME# open drain driver when power is
removed from Vcc of the component. This assumes that no event has occurred to cause the device to

attempt to assert PME#.

Revision 2.3

118

Refer to Section 3.8.1. for special requirements for AD[63::32], C/BE[7::4]#, and
PAR64 when they are not connected (as in a 64-bit add-in card installed in a 32-bit
connector).

4.2.1.2. AC Specifications

Table 4-2 summarizes the AC specifications for 5V signaling.

Table 4-2: AC Specifications for 5V Signaling

Symbol Parameter Condition Min Max Units Notes

Ioh(AC) Switching
0<Vout<1.4 -44 mA 1

Current High 1.4<Vout<2.4 -44+(Vout-1.4)/0.024 mA 1, 2

3.1<Vout<Vcc Eqt'n A 1, 3

(Test Point) Vout = 3.1 -142 mA 3

Iol(AC) Switching
Vout > 2.2 95 mA 1

Current Low 2.2>Vout>0.55 Vout/0.023 mA 1

0.71>Vout>0 Eqt'n B 1, 3

(Test Point) Vout = 0.71 206 mA 3

Icl Low Clamp
Current

-5 < Vin ≤ -1 -25+(Vin+1)/0.015 mA

slewr Output Rise Slew
Rate

0.4V to 2.4V load 1 5 V / ns 4

slewf Output Fall Slew
Rate

2.4V to 0.4V load 1 5 V / ns 4

NOTES:

1. Refer to the V/I curves in Figure 4-2. Switching current characteristics for REQ# and GNT# are permitted
to be one half of that specified here; i.e., half size output drivers may be used on these signals. This
specification does not apply to CLK and RST# which are system outputs. "Switching Current High"
specifications are not relevant to SERR#, PME#, INTA#, INTB#, INTC#, and INTD# which are open drain
outputs.

2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC
drive point rather than toward the voltage rail (as is done in the pull-down curve). This difference is
intended to allow for an optional N-channel pull-up.

3. Maximum current requirements must be met as drivers pull beyond the first step voltage. Equations
defining these maximums (A and B) are provided with the respective diagrams in Figure 4-2. The
equation-defined maximums should be met by design. In order to facilitate component testing, a maximum
current test point is defined for each side of the output driver.

Revision 2.3

119

4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather
than the instantaneous rate at any point within the transition range. The specified load (diagram
below) is optional; i.e., the designer may elect to meet this parameter with an unloaded output.
However, adherence to both maximum and minimum parameters is required (the maximum is not
simply a guideline).

1K Ω
10 pF

o u tp u t
b u f fe r

p in 1 /2 in . m a x .

Vcc

1K Ω

The minimum and maximum drive characteristics of PCI output buffers are defined by
V/I curves. These curves should be interpreted as traditional “DC” transistor curves with
the following exceptions: the “DC Drive Point” is the only position on the curves at
which steady state operation is intended, while the higher current parts of the curves are
only reached momentarily during bus switching transients. The “AC Drive Point” (the
real definition of buffer strength) defines the minimum instantaneous current curve
required to switch the bus with a single reflection. From a quiescent or steady state, the
current associated with the AC drive point must be reached within the output delay time,
Tval. Note, however, that this delay time also includes necessary logic time. The
partitioning of Tval between clock distribution, logic, and output buffer is not specified,
but the faster the buffer (as long as it does not exceed the maximum rise/fall slew rate
specification), the more time is allowed for logic delay inside the part. The “Test Point”
defines the maximum allowable instantaneous current curve in order to limit switching
noise and is selected roughly on a 22 Ω load line.

Current (mA)-44 -176

Vcc

V
ol

ta
ge

2.4

1.4

-2 Current (mA)95 380

Vcc

Vo
lta

ge

2.2

0.55

3, 6

DC drive
point

AC drive
point

Pull Up Pull Down

DC
drive point

AC drive
point

test
point

test
point

Equation A: Equation B:

Ioh = 11.9*(Vout-5.25)*(Vout+2.45) Iol = 78.5*Vout*(4.4-Vout)

for Vcc > Vout > 3.1 V for 0 V < Vout < 0.71 V

Figure 4-2: V/I Curves for 5V Signaling

Revision 2.3

120

Adherence to these curves is evaluated at worst case conditions. The minimum pull up
curve is evaluated at minimum Vcc and high temperature. The minimum pull down
curve is evaluated at maximum Vcc and high temperature. The maximum curve test
points are evaluated at maximum Vcc and low temperature.

Inputs are required to be clamped to ground. Clamps to the 5V rail are optional, but may
be needed to protect 3.3V input devices (refer to Section 4.2.1.3.). Clamping directly to
the 3.3V rail with a simple diode must never be used in the 5V signaling environment.
When dual power rails are used, parasitic diode paths can exist from one supply to
another. These diode paths can become significantly forward biased (conducting) if one
of the power rails goes out of specification momentarily. Diode clamps to a power rail,
as well as to output pull-up devices, must be able to withstand short circuit current until
drivers can be tri-stated. Refer to Section 4.3.2. for more information.

4.2.1.3. Maximum AC Ratings and Device Protection

Maximum AC waveforms are included here as examples of worst case AC operating
conditions. It is recommended that these waveforms be used as qualification criteria,
against which the long term reliability of a device is evaluated. This is not intended to be
used as a production test; it is intended that this level of robustness be guaranteed by
design. This section covers AC operating conditions only; DC conditions are specified in
Section 4.2.1.1.

The PCI environment contains many reactive elements and, in general, must be treated as
a non-terminated, transmission line environment. The basic premise of the environment
requires that a signal reflect at the end of the line and return to the driver before the signal
is considered switched. As a consequence of this environment, under certain conditions
of drivers, device topology, system board impedance, add-in card impedance, etc., the
"open circuit" voltage at the pins of PCI devices will exceed the expected ground-to-Vcc
voltage range by a considerable amount. The technology used to implement PCI can
vary from vendor to vendor, so it cannot be assumed that the technology is naturally
immune to these effects. This under-/over-voltage specification provides a synthetic
worst-case AC environment, against which the long term reliability of a device can be
evaluated.

All input, bi-directional, and tri-state outputs used on each PCI device must be capable of
continuous exposure to the following synthetic waveform which is applied with the
equivalent of a zero impedance voltage source driving a series resistor directly into each
input or tri-stated output pin of the PCI device. The waveform provided by the voltage
source (or open circuit voltage) and the resistor value are shown in Figure 4-3. The open
circuit waveform is a composite of simulated worst cases29; some had narrower pulse
widths, while others had lower voltage peaks. The resistor is calculated to provide a
worst case current into an effective (internal) clamp diode. Note that:

• The voltage waveform is supplied at the resistor shown in the evaluation setup, not
the package pin.

• With effective clamping, the waveform at the package pin will be greatly reduced.

29 Waveforms based on worst case (strongest) driver, maximum and minimum system configurations, with
no internal clamp diodes.

Revision 2.3

121

• The upper clamp is optional, but if used, it must be connected to the 5V supply or the
VI/O plane of the add-in card but never30 the 3.3V supply.

• For devices built in “3 volt technology,” the upper clamp is, in practice, required for
device protection.

• In order to limit signal ringing in systems that tend to generate large overshoots,
system board vendors may wish to use layout techniques to lower circuit impedance.

4 nSec
(max)

11 v, p-to-p
(minimum)

11 nSec
(min)

62.5 nSec
(16 MHz)

Overvoltage Waveform
Voltage Source Impedance

R = 55 Ω

10.75 v, p-to-p
(minimum)

Undervoltage Waveform
Voltage Source Impedance

R = 25 Ω

+ 5.25 v

- 5.5 v

 + 11 v

 0 v

V
Evaluation

Setup

R
Input

Buffer

5v. supply

Figure 4-3: Maximum AC Waveforms for 5V Signaling

30 It is possible to use alternative clamps, such as a diode stack to the 3.3V rail or a circuit to ground, if it
can be insured that the I/O pin will never be clamped below the 5V level.

Revision 2.3

122

4.2.2. 3.3V Signaling Environment

4.2.2.1. DC Specifications

Table 4-3 summarizes the DC specifications for 3.3V signaling.

Table 4-3: DC Specifications for 3.3V Signaling

Symbol Parameter Condition Min Max Units Notes

Vcc Supply Voltage 3.0 3.6 V

Vih Input High Voltage 0.5Vcc Vcc + 0.5 V

Vil Input Low Voltage -0.5 0.3Vcc V

Vipu Input Pull-up Voltage 0.7Vcc V 1

Iil Input Leakage Current 0 < Vin < Vcc +10 µA 2

Voh Output High Voltage Iout = -500 µA 0.9Vcc V

Vol Output Low Voltage Iout = 1500 µA 0.1Vcc V

Cin Input Pin Capacitance 10 pF 3

Cclk CLK Pin Capacitance 5 12 pF

CIDSEL IDSEL Pin Capacitance 8 pF 4

Lpin Pin Inductance 20 nH 5

IOff PME# input leakage Vo ≤ 3.6 V

Vcc off or floating

– 1 µA 6

NOTES:

1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are
calculated to pull a floated network. Applications sensitive to static power utilization must assure that the
input buffer is conducting minimum current at this input voltage.

2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.

3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK, SMBDAT, and SMBCLK)
with an exception granted to system board-only devices up to 16 pF in order to accommodate PGA
packaging. This would mean, in general, that components for add-in cards need to use alternatives to
ceramic PGA packaging; i.e., PQFP, SGA, etc. Pin capacitance for SMBCLK and SMBDAT is not
specified; however, the maximum capacitive load is specified for the add-in card in Section 8.2.5.

4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].

5. This is a recommendation, not an absolute requirement. The actual value should be provided with the
component data sheet.

6. This input leakage is the maximum allowable leakage into the PME# open drain driver when power is
removed from Vcc of the component. This assumes that no event has occurred to cause the device to

attempt to assert PME#.

Refer to Section 3.8.1. for special requirements for AD[63::32], C/BE[7::4]#, and
PAR64 when they are not connected (as in a 64-bit add-in card installed in a 32-bit
connector).

Revision 2.3

123

4.2.2.2. AC Specifications

Table 4-4 summarizes the AC specifications for 3.3V signaling.

Table 4-4: AC Specifications for 3.3V Signaling

Symbol Parameter Condition Min Max Units Notes

Ioh(AC) Switching
0<Vout<0.3Vcc -12Vcc mA 1

Current High 0.3Vcc<Vout<0.9Vcc -17.1(Vcc-Vout) mA 1

0.7Vcc<Vout<Vcc Eqt'n C 1, 2

(Test Point) Vout = 0.7Vcc -32Vcc mA 2

Iol(AC) Switching
Vcc>Vout>0.6Vcc 16Vcc mA 1

Current Low 0.6Vcc>Vout>0.1Vcc 26.7Vout mA 1

0.18Vcc>Vout>0 Eqt'n D 1, 2

(Test Point) Vout = 0.18Vcc 38Vcc mA 2

Icl Low Clamp
Current

-3<Vin ≤ -1 -25+(Vin+1)/0.015 mA

Ich High Clamp
Current

Vcc+4>Vin ≥ Vcc+1 25+(Vin-Vcc-1)/0.015 mA

slewr
Output Rise Slew
Rate

0.2Vcc - 0.6Vcc load 1 4 V/ns 3

slewf
Output Fall Slew
Rate

0.6Vcc - 0.2Vccl load 1 4 V/ns 3

NOTES:

1. Refer to the V/I curves in Figure 4-4. Switching current characteristics for REQ# and GNT# are
permitted to be one half of that specified here; i.e., half size output drivers may be used on these
signals. This specification does not apply to CLK and RST# which are system outputs. "Switching
Current High" specifications are not relevant to SERR#, PME#, INTA#, INTB#, INTC#, and INTD# which
are open drain outputs.

2. Maximum current requirements must be met as drivers pull beyond the first step voltage. Equations
defining these maximums (C and D) are provided with the respective diagrams in Figure 4-4. The
equation-defined maximums should be met by design. In order to facilitate component testing, a
maximum current test point is defined for each side of the output driver.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than
the instantaneous rate at any point within the transition range. The specified load (diagram below) is
optional; i.e., the designer may elect to meet this parameter with an unloaded output. However,
adherence to both maximum and minimum parameters is required (the maximum is not simply a
guideline). Rise slew rate does not apply to open drain outputs.

1K Ω
10 pF

o u tp u t
b u f fe r

p in 1 /2 in . m a x .

Vcc

1K Ω

The minimum and maximum drive characteristics of PCI output buffers are defined by
V/I curves. These curves should be interpreted as traditional “DC” transistor curves with
the following exceptions: the “DC Drive Point” is the only position on the curves at
which steady state operation is intended, while the higher current parts of the curves are
only reached momentarily during bus switching transients. The “AC Drive Point” (the

Revision 2.3

124

real definition of buffer strength) defines the minimum instantaneous current curve
required to switch the bus with a single reflection. From a quiescent or steady state, the
current associated with the AC drive point must be reached within the output delay time,
Tval. Note, however, that this delay time also includes necessary logic time. The
partitioning of Tval between clock distribution, logic, and output buffer is not specified,
but the faster the buffer (as long as it does not exceed the maximum rise/fall slew rate
specification), the more time is allowed for logic delay inside the part. The “Test Point”
defines the maximum allowable instantaneous current curve in order to limit switching
noise and is selected roughly on a 22 Ω load line.

Adherence to these curves is evaluated at worst case conditions. The minimum pull up
curve is evaluated at minimum Vcc and high temperature. The minimum pull down
curve is evaluated at maximum Vcc and high temperature. The maximum curve test
points are evaluated at maximum Vcc and low temperature.

DC
drive point

-12Vcc

Vcc

V
ol

ta
ge

0.9
Vcc

-0.5 16Vcc 64Vcc

Vcc

1.5

0.1
Vcc

0.6
Vcc

0.3
Vcc

Pull Up

-48Vcc
Current (mA)Current (mA)

V
ol

ta
ge

DC drive
point

AC drive
point

Pull Down

AC drive
point

test
point

test
point

0.5 Vcc

Equation C: Equation D:

Ioh = (98.0/Vcc)*(Vout-Vcc)*(Vout+0.4Vcc) Iol = (256/Vcc)*Vout*(Vcc-Vout)

for Vcc > Vout > 0.7 Vcc for 0v < Vout < 0.18 Vcc

Figure 4-4: V/I Curves for 3.3V Signaling

Inputs are required to be clamped to both ground and Vcc (3.3V) rails. When dual power
rails are used, parasitic diode paths could exist from one supply to another. These diode
paths can become significantly forward biased (conducting) if one of the power rails goes
out of specification momentarily. Diode clamps to a power rail, as well as output pull-up
devices, must be able to withstand short circuit current until drivers can be tri-stated.
Refer to Section 4.3.2. for more information.

Revision 2.3

125

4.2.2.3. Maximum AC Ratings and Device Protection

Refer to the "Maximum AC Ratings" section in the 5V signaling environment.
Maximum AC waveforms are included here as examples of worst case AC operating
conditions. It is recommended that these waveforms be used as qualification criteria
against which the long term reliability of a device is evaluated. This is not intended to be
used as a production test; it is intended that this level of robustness be guaranteed by
design. This section covers AC operating conditions only; DC conditions are specified in
Section 4.2.2.1.

All input, bi-directional, and tri-state outputs used on each PCI device must be capable of
continuous exposure to the following synthetic waveform, which is applied with the
equivalent of a zero impedance voltage source driving a series resistor directly into each
input or tri-stated output pin of the PCI device. The waveform provided by the voltage
source (or open circuit voltage) and the resistor value are shown in Figure 4-5. The open
circuit waveform is a composite of simulated worst cases; some had narrower pulse
widths, while others had lower voltage peaks. The resistor is calculated to provide a
worst case current into an effective (internal) clamp diode. Note that:

• The voltage waveform is supplied at the resistor shown in the evaluation setup, not
the package pin.

• With effective clamping, the waveform at the package pin will be greatly reduced.

• In order to limit signal ringing in systems that tend to generate large overshoots,
system board vendors may wish to use layout techniques to lower circuit impedance.

4 nSec
(max)

7.1 v, p-to-p
(minimum)

11 nSec
(min)

62.5 nSec
(16 MHz)

Overvoltage Waveform
Voltage Source Impedance

R = 29 Ω

7.1 v, p-to-p
(minimum)

Undervoltage Waveform
Voltage Source Impedance

R = 28 Ω

+ 3.6 v

- 3.5 v

+ 7.1 v

0 v

V
Evaluation

Setup

R
Input

Buffer

3.3v. supply

Figure 4-5: Maximum AC Waveforms for 3.3V Signaling

Revision 2.3

126

4.2.3. Timing Specification

4.2.3.1. Clock Specification

The clock waveform must be delivered to each PCI component in the system. In the case
of add-in cards, compliance with the clock specification is measured at the add-in card
component not at the connector slot. Figure 4-6 shows the clock waveform and required
measurement points for both 5V and 3.3V signaling environments. Table 4-5
summarizes the clock specifications. Refer to item 8 in Section 3.10. for special
considerations when using PCI-to-PCI bridges on add-in cards or when add-in card slots
are located downstream of a PCI-to-PCI bridge.

2.0 v

0.8 v

1.5 v

2.4 v

0.4 v

2 v, p-to-p
(minimum)

T_high

T_low

0.3 Vcc

T_cyc

0.5 Vcc

5 volt Clock

3.3 volt Clock

0.4 Vcc

0.6 Vcc

0.2 Vcc

0.4 Vcc, p-to-p
(minimum)

Figure 4-6: Clock Waveforms

Revision 2.3

127

Table 4-5: Clock and Reset Specifications

Symbol Parameter Min Max Units Notes

Tcyc CLK Cycle Time 30 ∞ ns 1

Thigh CLK High Time 11 ns

Tlow CLK Low Time 11 ns

- CLK Slew Rate 1 4 V/ns 2

- RST# Slew Rate 50 - mV/ns 3

NOTES:

1. In general, all PCI components must work with any clock frequency between
nominal DC and 33 MHz. Device operational parameters at frequencies under
16 MHz may be guaranteed by design rather than by testing. The clock
frequency may be changed at any time during the operation of the system so
long as the clock edges remain "clean" (monotonic) and the minimum cycle and
high and low times are not violated. For example, the use of spread spectrum
techniques to reduce EMI emissions is included in this requirement. Refer to
Section 7.6.4.1. for the spread spectrum requirements for 66 MHz. The clock
may only be stopped in a low state. A variance on this specification is allowed
for components designed for use on the system board only. These
components may operate at any single fixed frequency up to 33 MHz and may
enforce a policy of no frequency changes.

2. Rise and fall times are specified in terms of the edge rate measured in V/ns.
This slew rate must be met across the minimum peak-to-peak portion of the
clock waveform as shown in Figure 4-6.

3. The minimum RST# slew rate applies only to the rising (deassertion) edge of
the reset signal and ensures that system noise cannot render an otherwise
monotonic signal to appear to bounce in the switching range. RST# waveforms
and timing are discussed in Section 4.3.2.

Revision 2.3

128

4.2.3.2. Timing Parameters

Table 4-6 provides the timing parameters for 3.3V and 5V signaling environments.

Table 4-6: 3.3V and 5V Timing Parameters

Symbol Parameter Min Max Units Notes

Tval CLK to Signal Valid Delay - bused signals 2 11 ns 1, 2, 3

Tval(ptp) CLK to Signal Valid Delay - point to point 2 12 ns 1, 2, 3

Ton Float to Active Delay 2 ns 1, 7

Toff Active to Float Delay 28 ns 1, 7

Tsu Input Setup Time to CLK - bused signals 7 ns 3, 4, 8

Tsu(ptp) Input Setup Time to CLK - point to point 10, 12 ns 3, 4

Th Input Hold Time from CLK 0 ns 4

Trst Reset active time after power stable 1 ms 5

Trst-clk Reset active time after CLK STABLE 100 µs 5

Trst-off Reset Active to Output Float delay 40 ns 5, 6,7

Trrsu REQ64# to RST# Setup time 10*Tcyc ns

Trrh RST# to REQ64# Hold time 0 50 ns

Trhfa RST# High to First configuration Access 225 clocks

Trhff RST# High to First FRAME# assertion 5 clocks

Tpvrh Power valid to RST# high 100 ms

NOTES:

1. See the timing measurement conditions in Figure 4-7.

2. For parts compliant to the 3.3V signaling environment:
Minimum times are evaluated with same load used for slew rate measurement (as shown in
Table 4-4, note 3); maximum times are evaluated with the following load circuits, for high-going
 and low-going edges respectively.

For parts compliant to the 5V signaling environment:
Minimum times are evaluated with 0 pF equivalent load; maximum times are evaluated with 50 pF
equivalent load. Actual test capacitance may vary, but results must be correlated to these
specifications. Note that faster buffers may exhibit some ring back when attached to a 50 pF lump
load which should be of no consequence as long as the output buffers are in full compliance with
slew rate and V/I curve specifications.

25 Ω
10 pF

Vcc

1 /2 in . m a x .

25 Ω 10 pF

Tval(max) Rising Edge

1 /2 in . m a x .

o u tp u t
b u f fe r

p in

Tval(max) Falling Edge

3. REQ# and GNT# are point-to-point signals and have different output valid delay and input setup times than
do bused signals. GNT# has a setup of 10; REQ# has a setup of 12. All other signals are bused.

Revision 2.3

129

4. See the timing measurement conditions in Figure 4-8.

5. CLK is stable when it meets the requirements in Section 4.2.3.1. RST# is asserted and deasserted
asynchronously with respect to CLK. Refer to Section 4.3.2. for more information.

6. All output drivers must be asynchronously floated when RST# is active. Refer to Section 3.8.1. for special
requirements for AD[63::32], C/BE[7::4]#, and PAR64 when they are not connected (as in a 64-bit add-in
card installed in a 32-bit connector).

7. For purposes of Active/Float timing measurements, the Hi-Z or “off” state is defined to be when the total
current delivered through the component pin is less than or equal to the leakage current specification.

8. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at
the same time. Refer to Section 3.10., item 9, for additional details.

4.2.3.3. Measurement and Test Conditions

Figures 4-7 and 4-8 define the conditions under which timing measurements are made.
The component test guarantees that all timings are met with minimum clock slew rate
(slowest edge) and voltage swing. The design must guarantee that minimum timings are
also met with maximum clock slew rate (fastest edge) and voltage swing. In addition, the
design must guarantee proper input operation for input voltage swings and slew rates that
exceed the specified test conditions.

CLK

OUTPUT
DELAY

T_val

T_on

V_test

T_off

Tri-State
OUTPUT

V_test (5v. signaling)
V_trise, V_tfall (3.3v. signaling)

V_th

V_tl

output current leakage current

Figure 4-7: Output Timing Measurement Conditions

INPUT
inputs
valid

V_th

V_tl

T_h
T_su

CLK

V_test

V_test

V_test V_max

V_th

V_tl

Figure 4-8: Input Timing Measurement Conditions

Revision 2.3

130

Table 4-7: Measure Condition Parameters

Symbol 3.3V Signaling 5V Signaling Units

Vth 0.6Vcc 2.4 V (Note)

Vtl 0.2Vcc 0.4 V (Note)

Vtest 0.4Vcc 1.5 V

Vtrise 0.285Vcc n/a V

Vtfall 0.615Vcc n/a V

Vmax 0.4Vcc 2.0 V (Note)

Input Signal
Edge Rate

1 V/ns

NOTE:

The input test for the 3.3V environment is done with 0.1Vcc of

overdrive; the test for the 5V environment is done with 400 mV of
overdrive (over Vih and Vil) Timing parameters must be met with no
more overdrive than this. Vmax specifies the maximum peak-to-peak
waveform allowed for measuring input timing. Production testing may
use different voltage values, but must correlate results back to these
parameters.

4.2.4. Indeterminate Inputs and Metastability

At times, various inputs may be indeterminate. Components must avoid logical
operational errors and metastability by sampling inputs only on “qualified” clock edges.
In general, synchronous signals are assumed to be valid and determinate only at the clock
edge on which they are “qualified” (refer to Section 3.2.).

System designs must assure that floating inputs are biased away from the switching
region in order to avoid logical, electrical, thermal, or reliability problems. In general, it
is not possible to avoid situations where low slew rate signals (e.g., resistively coupled
IDSEL) pass through the switching region at the time of a clock edge, but they must not
be allowed to remain at the threshold point for many clock periods. Frequently, a pre-
charged bus may be assumed to retain its state while not driven for a few clock periods
during bus turnaround.

There are specific instances when signals are known to be indeterminate. These must be
carefully considered in any design.

All AD[31::00], C/BE[3::0]#, and PAR pins are indeterminate when tri-stated for bus
turnaround. This will sometimes last for several cycles while waiting for a device to
respond at the beginning of a transaction.

The IDSEL pin is indeterminate at all times except during configuration cycles. If a
resistive connection to an AD line is used, it may tend to float around the switching
region much of the time.

Revision 2.3

131

The PME# and SERR# pins must be considered indeterminate for a number of cycles
after they have been deasserted.

Nearly all signals will be indeterminate for as long as RST# is asserted and for a period
of time after it is released. Pins with pull-up resistors will eventually resolve high.

4.2.5. Vendor Provided Specification

The vendor of a PCI system is responsible for electrical simulation of the PCI bus and
components to guarantee proper operation. To help facilitate this effort, component
vendors are encouraged to make the following information available: (It is recommended
that component vendors make this information electronically available in the IBIS model
format.)

• Pin capacitance for all pins.

• Pin inductance for all pins.

• Output V/I curves under switching conditions. Two curves should be given for each
output type used: one for driving high, the other for driving low. Both should show
best-typical-worst curves. Also, "beyond-the-rail" response is critical, so the voltage
range should span -3 V to 7 V for 3.3V signaling and -5 V to 10 V for 5V signaling.

• Input V/I curves under switching conditions. A V/I curve of the input structure when
the output is tri-stated is also important. This plot should also show best-typical-
worst curves over the range of 0 to Vcc.

• Rise/fall slew rates for each output type.

• Complete absolute maximum data, including operating and non-operating
temperature, DC maximums, etc.

In addition to this component information, connector vendors are encouraged to make
available accurate simulation models of PCI connectors.

4.2.6. Pinout Recommendation

This section provides a recommended pinout for PCI components. Since add-in card
stubs are so limited, layout issues are greatly minimized if the component pinout aligns
exactly with the add-in card (connector) pinout. Components for use only on system
boards are encouraged also to follow this same signal ordering to allow layouts with
minimum stubs. Figure 4-9 shows the recommended pinout for a typical PQFP PCI
component. Note that the pinout is exactly aligned with the signal order on the add-in
card connector. Placement and number of power and ground pins is device-dependent.

The additional signals needed in 64-bit versions of the bus continue wrapping around the
component in a counter-clockwise direction in the same order they appear on the 64-bit
connector extension.

Revision 2.3

132

PCI Component

All PCI Shared Signals
Below this Line

{
JTAG

RST#
CLK
GNT
REQ

AD[31]
.
.

AD[24]
C/BE3#
IDSEL

C
/B

E
2#

FR
A

M
E

#
IR

D
Y

#
TR

D
Y

#
D

E
V

S
E

L#
S

TO
P

#
LO

C
K

#
P

E
R

R
#

S
E

R
R

#
P

A
R

C
/B

E
1#

A
D

[2
3]

.
A

D
[1

6]

A
D

[1
5]

. .
A

D
[8

]

AD[0]
.

AD[7]
C/BE0#

AD[32]
.
.

AD[63]
C/BE4#
C/BE5#
C/BE6#
C/BE7#

REQ64#
ACK64#

PCI Card Edge

PAR64

Figure 4-9: Suggested Pinout for PQFP PCI Component

Placing the IDSEL input as close as possible to AD[31::11] allows the option for a non-
resistive31 connection of IDSEL to the appropriate address line with a small additional
load. Note that this pin has a lower capacitance specification that in some cases will
constrain its placement in the package.

4.3. System Board Specification

4.3.1. Clock Skew

The maximum allowable clock skew is 2 ns. This specification applies not only at a
single threshold point, but at all points on the clock edge that fall in the switching range
defined in Table 4-8 and Figure 4-10. The maximum skew is measured between any two
components32 rather than between connectors. To correctly evaluate clock skew, the
system designer must take into account clock distribution on the add-in card which is
specified in Section 4.4.

31 Non-resistive connections of IDSEL to one of the AD[xx] lines create a technical violation of the single
load per add-in card rule. PCI protocol provides for pre-driving of address lines in configuration cycles,
and it is recommended that this be done in order to allow a resistive coupling of IDSEL. In absence of this,
signal performance must be derated for the extra IDSEL load.

32 The system designer must address an additional source of skew. This clock skew occurs between two
components that have clock input trip points at opposite ends of the Vil - Vih range. In certain
circumstances, this can add to the clock skew measurement as described here. In all cases, total clock skew
must be limited to the specified number.

Revision 2.3

133

Table 4-8: Clock Skew Parameters

Symbol 3.3V Signaling 5V Signaling Units

Vtest 0.4 Vcc 1.5 V

Tskew 2 (max) 2 (max) ns

CLK
(@Device #1)

CLK
(@Device #2)

V_test
V_ih

T_skew

T_skew

T_skew

V_test
V_il

V_il

V_ih

Figure 4-10: Clock Skew Diagram

4.3.2. Reset

The assertion and deassertion of the PCI reset signal (RST#) is asynchronous with
respect to CLK. The rising (deassertion) edge of the RST# signal must be monotonic
(bounce free) through the input switching range and must meet the minimum slew rate
specified in Table 4-5. The PCI specification does not preclude the implementation of a
synchronous RST#, if desired. The timing parameters for reset are listed in Table 4-6
with the exception of the Tfail parameter. This parameter provides for system reaction to
one or both of the power rails going out of specification. If this occurs, parasitic diode
paths could short circuit active output buffers. Therefore, RST# is asserted upon power
failure in order to float the output buffers.

The value of Tfail is the minimum of:

• 500 ns (maximum) from either power rail going out of specification (exceeding
specified tolerances by more than 500 mV)

• 100 ns (maximum) from the 5V rail falling below the 3.3V rail by more than
300 mV.

The system must assert RST# during power up or in the event of a power failure. In
order to minimize possible voltage contention between 5V and 3.3V parts, RST# must be
asserted as soon as possible during the power up sequence. Figure 4-11 shows a worst
case assertion of RST# asynchronously following the "power good" signal.33 After
RST# is asserted, PCI components must asynchronously disable (float) their outputs but
are not considered reset until both Trst and Trst-clk parameters have been met. The first
rising edge of RST# after power-on for any device must be no less than Tpvrh after all
the power supply voltages are within their specified limits for that device. If RST# is

33 Component vendors should note that a fixed timing relationship between RST# and power sequencing
cannot be guaranteed in all cases.

Revision 2.3

134

asserted while the power supply voltages remain within their specified limits, the
minimum pulse width of RST# is Trst. Figure 4-11 shows RST# signal timing.

The system must guarantee that the bus remains in the idle state for a minimum time
delay following the deassertion of RST# to a device before the system will permit the
first assertion of FRAME#. This time delay is included in Table 4-6 as Reset High to
First FRAME# assertion (Trhff). If a device requires longer than the specified time

(Trhff) after the deassertion of RST# before it is ready to participate in the bus signaling
protocol, then the device's state machines must remain in the reset state until all of the
following are simultaneously true:

• RST# is deasserted

• The device is ready to participate in the bus signaling protocol

• The bus is in the idle state

 Implementation Note: Reset

 An example of a device that could require more than Trhff to be ready to participate in
the bus signaling protocol is a 66-MHz device that includes a Phase-Locked Loop (PLL)
for distribution of the PCI clock internally to the device. The device may inhibit clocks
to the PCI interface until the PLL has locked. Since the PLL could easily require more
than Trhff to lock, this could result in the clocks being enabled to the PCI interface of this
device in the middle of a burst transfer between two other devices. When this occurs, the
66-MHz device would have to detect an idle bus condition before enabling the target
selection function.

 Some PCI devices must be prepared to respond as a target Trhff time after RST#
deasserts. For example, devices in the path between the CPU and the boot ROM (not
expansion ROM) must be prepared to respond as a target Trhff time after RST#
deasserts.

 All other devices must be prepared to respond as a target not more than Trhfa after the

deassertion of RST#. It is recommended that the system wait at least Trhfa following the

deassertion of RST# to a device before the first access to that device, unless the device is
in the path between the CPU and the boot ROM or the system knows that the device is
ready sooner.

 Software that accesses devices prior to the expiration of Trhfa must be prepared for the
devices either not to respond at all (resulting in Master-Abort) or for the devices to
respond with Retry until the expiration of Trhfa. At no time can a device return invalid
data. Devices are exempt from the Maximum Retry Time specification and the target
initial latency requirement until the expiration of Trhfa.

Revision 2.3

135

 Implementation Note: Trhfa

 Devices are encouraged to complete their initialization and be ready to accept their first
cycle (generally a Configuration Read cycle) as soon as possible after the deassertion of
RST#. Some system implementations will access devices prior to waiting the full value
of Trhfa, if they know in advance that all devices are ready sooner. For example, a
system with no PCI slots would only need to wait for the initialization requirements of
the embedded devices. Similarly, an intelligent add-in card that initialized its own
embedded PCI devices would only need to wait for the initialization requirements of
those devices.

 In some cases, such as intelligent add-in cards, the add-in card designer must select
devices that initialize in less than the full value of Trhfa. For example, suppose an
intelligent add-in card is not ready to respond as a target to the first Configuration
transaction from the host CPU until after the local CPU has configured the local devices.
In this case, the local devices must initialize fast enough to enable the local CPU to
complete its initialization in time for the first access from the host CPU.

PCI
SIGNALS

PCI_CLK

POW ER

PW R_GOOD

RST#

REQ64#

V
nom inal

 - X%

T
pvrh

tri-s ta te

T
rhff

T
rhfa

T
rst

T
rst-clk

T rrsu

T
rrh

T
rst-off

T
fail

) (

) (

) (

 Figure 4-11: Reset Timing 34

 Refer to Section 3.8.1. for special requirements for AD[63::32], C/BE[7::4]#, and
PAR64 when they are not connected (as in a 64-bit add-in card installed in a 32-bit
connector).

 34 This reset timing figure optionally shows the "PWR_GOOD" signal as a pulse which is used to time the
RST# pulse. In many systems, "PWR_GOOD" may be a level, in which case the RST# pulse must be
timed in another way.

Revision 2.3

136

 4.3.3. Pull-ups

 PCI control signals always require pull-up resistors on the system board (not the add-in
card) to ensure that they contain stable values when no agent is actively driving the bus.
This includes FRAME#, TRDY#, IRDY#, DEVSEL#, STOP#, SERR#, PERR#,
LOCK#, INTA#, INTB#, INTC#, INTD#, REQ64#, and ACK64#. The point-to-point
and shared 32-bit signals do not require pull-ups; bus parking ensures their stability.
Refer to Section 3.8.1. for special requirements for terminating AD[63::32],
C/BE[7::4]#, and PAR64. Refer to Section 4.3.7. for pull-up and decoupling
requirements for PRSNT1# and PRSNT2#. Refer to Section 7.7.7. for pull-up and
decoupling requirements for M66EN.

 A system that does not support the optional SMBus interface must provide individual
pull-up resistors (~5 kΩ) on the SMBCLK and SMBDAT pins for the system board
connectors. A system that supports the SMBus interface must provide pull-up devices
(passive or active) on SMBCLK and SMBDAT as defined in the SMBus 2.0
Specification. Refer to Section 8 of this specification. The pull-ups must be connected to
the power source attached to the 3.3Vaux pin of the PCI connector for systems with the
optional auxiliary power supply and to +3.3V supply for systems without the optional
supply. If boundary scan is not implemented on the system board, TMS and TDI must be
independently bused and pulled up, each with ~5 kΩ resistors, and TRST# and TCK
must be independently bused and pulled down, each with ~5 kΩ resistors. TDO must be
left open.

 The formulas for minimum and maximum pull-up resistors are provided below. Rmin is
primarily driven by Iol, the DC low output current, whereas the number of loads only has
a secondary effect. On the other hand, Rmax is primarily driven by the number of loads
present. The specification provides for a minimum R value that is calculated based on 16
loads (believed to be a worst case) and a typical R value that is calculated as the
maximum R value with 10 loads. The maximum R value is provided by formula only
and will be the highest in a system with the smallest number of loads.

 Rmin = [Vcc(max) − Vol] / [Iol + (16 * Iil)], where 16 = max number of loads

 Rmax = [Vcc(min) – Vx] / [num_loads * Iih], where Vx = 2.7 V for 5V
signaling and Vx = 0.7Vcc for 3.3V signaling.

 Table 4-9 provides minimum and typical values for both 3.3V and 5V signaling
environments. The typical values have been derated for 10% resistors at nominal values.

 Table 4-9: Minimum and Typical Pull-up Resistor Values

 Signaling Rail Rmin Rtypical Rmax

 3.3V 2.42 kΩ 8.2 kΩ @ 10% see formula

 5V 963 Ω 2.7 kΩ @ 10% see formula

 The central resource, or any component containing an arbitration unit, may require a
weak pull-up on each unconnected REQ# pin and each REQ# pin connected to a PCI
slot in order to insure that these signals do not float. Values for this pull-up shall be
specified by the central resource vendor.

 Systems utilizing PME# must provide a pull-up on that signal. The resistor value used is
calculated using the formulas above but substituting IOff for Iih.

Revision 2.3

137

 4.3.4. Power

 4.3.4.1. Power Requirements

 All PCI connectors require four power rails: +5V, +3.3V, +12V, and -12V. Systems that
provide PCI connectors are required to provide all four rails in every system with the
current budget specified in Table 4-10. Systems may optionally supply 3.3Vaux power,
as specified in the PCI Bus Power Management Interface Specification. Systems that do
not support PCI bus power management must treat the 3.3Vaux pin as reserved.

 Current requirements per connector for the two 12V rails are provided in Table 4-10.
There are no specific system requirements for current per connector on the 3.3V and 5V
rails; this is system dependent. Note that Section 4.4.2.2. requires that an add-in card
must limit its total power consumption to 25 watts (from all power rails). The system
provides a total power budget for add-in cards that can be distributed between connectors
in an arbitrary way. The PRSNTn# pins on the connector allow the system to optionally
assess the power demand of each add-in card and determine if the installed configuration
will run within the total power budget. Refer to Section 4.4.1. for further details.

 Table 4-10 specifies the tolerances of supply rails. Note that these tolerances are to be
guaranteed at the components not the supply.

 Table 4-10: Power Supply Rail Tolerances

 Power Rail Add-in Cards (Short and Long)

 3.3 V ±0.3 V 7.6 A max. (system dependent)

 5 V ± 5 % 5 A max. (system dependent)

 12 V ±5% 500 mA

 -12 V ±10% 100 mA

 4.3.4.2. Sequencing

 There is no specified sequence in which the four power rails are activated or deactivated.
They may come up and go down in any order. The system must assert RST# both at
power up and whenever either the 3.3V or 5V rails go out of specification (per
Section 4.3.2.). During reset, all PCI signals are driven to a "safe" state, as described in
Section 4.3.2.

Revision 2.3

138

 4.3.4.3. Decoupling

 All power planes must be decoupled to ground to provide:

• reasonable management of the switching currents (d I/d t) to which the plane and its
supply path are subjected

• an AC return path in a manner consistent with high-speed signaling techniques

This is platform dependent and not detailed in the specification.

4.3.5. System Timing Budget

When computing a total PCI load model, careful attention must be paid to maximum
trace length and loading of add-in cards, as specified in Section 4.4.3. Also, the
maximum pin capacitance of 10 pF must be assumed for add-in cards, whereas the actual
pin capacitance may be used for system board devices.

The total clock period can be divided into four segments. Valid output delay (Tval) and
input setup time (Tsu) are specified by the component specification. Total clock skew
(Tskew) and maximum bus propagation time (Tprop) are system parameters. Tprop is
specified as 10 ns but may be increased to 11 ns by lowering clock skew; that is, Tprop
plus Tskew together may not exceed 12 ns; however, under no circumstance may Tskew
exceed 2 ns. Furthermore, by using clock rates slower than 33 MHz, some systems may
build larger PCI topologies having Tprop values larger than those specified here. Since
component times (Tval and Tsu) and clock skew are fixed, any increase in clock cycle
time allows an equivalent increase in Tprop. For example, at 25 MHz (40 ns clock
period), Tprop may be increased to 20 ns. Note that this tradeoff affects system boards
only; all add-in card designs must assume 33 MHz operation.

Tprop is measured as shown in Figure 4-12 and Figure 4-13. It begins at the time the
signal at the output buffer would have crossed the threshold point of Vtrise or Vtfall for
3.3V signaling (Vtest in Figure 4-13 for 5V signaling) had the output been driving the
specified Tval (50 pF lump load for 5V signaling). The end of Tprop for any particular
input is determined by one of the following two measurement methods. The method that
produces the longer value for Tprop must be used.

Method 1: The end of Tprop is the time when the signal at the input crosses Vtest for the
last time in Figure 4-12 a, d. (See Figure 4-13 a, d for 5V signaling.)

Method 2: Construct a line with a slope equal to the Input Signal Edge Rate shown in
Table 4-7 and crossing through the point where the signal at the input crosses
Vih (high going) or Vil (low going) for the last time. The end of Tprop is the
time when the constructed line crosses Vtest in Figure 4-12 b, c, e, f. (See
Figure 4-13 b, c, e, f for 5V signaling.)

Revision 2.3

139

Implementation Note: Determining the End of Tprop

The end of Tprop is always determined by the calculation method that produces the
longer value of Tprop. The shape of the waveform at the input buffer will determine
which measurement method will produce the longer value.

When the signal rises or falls from Vtest to the last crossing of Vih (high going) or Vil
(low going) faster than the Input Signal Edge Rate shown in Table 4-7, Method 1 will
produce the longer value as shown in Figure 4-12 a, d for 3.3V signaling. (See Figure 4-
13 a, d for 5V signaling.)

When the signal rises or falls from Vtest to the last crossing of Vih (high going) or Vil
(low going) slower than the Input Signal Edge Rate, Method 2 will produce the longer
value. In other words, if the signal plateaus or rises (high going) or falls (low going)
slowly after crossing Vtest, or rings back across Vih (high going) or Vil (low going)
significantly after crossing Vtest, Method 2 will produce the longer value as shown in
Figure 4-12 b, c, e, f for 3.3V signaling. (See Figure 4-13 b, c, e, f for 5V signaling.)

Refer to Table 4-1, Table 4-3, and Table 4-7 for the values of parameters in Figure 4-12
and Figure 4-13 in 33-MHz mode. Refer to Chapter 7 for a description of 66-MHz
operation.

For a given driver location, the worst case that must be considered when determining the
value of Tprop is when the signal settles at all other devices on the bus. The value of
Tprop is not affected by the time the signal settles at the driver output, since devices are
not permitted to drive and receive a signal at the same time. Refer to Section 3.10, item 9
for additional details.

In many system layouts, correct PCI signal propagation relies on diodes embedded in PCI
components to limit reflections and successfully meet Tprop. In configurations where
unterminated trace ends propagate a significant distance from a PCI component (e.g., a
section of unpopulated add-in card connectors), it may be necessary to add active (e.g.,
diode) termination at the unloaded end of the bus in order to insure adequate signal
quality. Note that since the signaling protocol depends on the initial reflection, passive
termination does not work.

Revision 2.3

140

0.1Vcc

0.2Vcc

0.3Vcc

0.4Vcc

0.5Vcc

0.6Vcc

0.7Vcc
Vth

Vih

Vtest

Vtrise

Tprop

Driving Bus

Driving
Test Load

0.1Vcc

0.2Vcc

0.3Vcc

0.4Vcc

0.5Vcc

0.6Vcc

0.7Vcc
Vth

Vih

Vtest

Vtrise

Tprop

Driving
Bus

Driving
Test Load

Input Signal
Slew Rate

0.1Vcc

0.2Vcc

0.3Vcc

0.4Vcc

0.5Vcc

0.6Vcc

0.7Vcc
Vth

Vih

Vtest

Vtrise

Tprop

Driving
Bus

Driving
Test Load

0.8Vcc

0.9Vcc

Input Signal
Slew Rate

(a) (b)

(c)

0.1Vcc

0.2Vcc

0.3Vcc

0.4Vcc

0.5Vcc

0.6Vcc

0.7Vcc
Vtfall

Vtl

Vtest

Vil

Tprop

Driving Bus

Driving
Test Load

0.8Vcc

0.9Vcc

Input Signal
Slew Rate

(d)

0.1Vcc

0.2Vcc

0.3Vcc

0.4Vcc

0.5Vcc

0.6Vcc

0.7Vcc
Vtfall

Vtl

Vtest

Vil

Tprop

Driving Bus

Driving
Test Load

0.8Vcc

0.9Vcc

(e)

Input Signal
Slew Rate

0.1Vcc

0.2Vcc

0.3Vcc

0.4Vcc

0.5Vcc

0.6Vcc

0.7Vcc
Vtfall

Vtl

Vtest

Vil

Tprop

Driving Bus

Driving
Test Load

0.8Vcc

0.9Vcc

(f)
0 0

0 0

00

Figure 4-12: Measurement of Tprop, 3.3 Volt Signaling

Revision 2.3

141

Driving
Bus

Driving
Test Load

2.0V

1.0V

thV

ihV

testV
Driving
Bus

Driving
Test Load

thV

ihV

testV

Driving
Bus

Driving
Test Load

2.0V

1.0V

thV

ihV

testV

Driving Bus

Driving Test Load

tlV

ilV

testV

Driving
Bus

Tprop

2.0V

1.0V

tlV

ilV

testV

Driving
Test Load

ilV

tlV

testV

Input
Signal
Edge
Rate

Input Signal
Edge Rate

Driving Test Load

Input Signal
Edge Rate

Input Signal
Edge Rate

Driving Bus

(a) (b)

(c) (d)

(e) (f)

2.0V

1.0V

2.0V

1.0V

2.0V

1.0V

Tprop

Tprop Tprop

Tprop

Tprop

Figure 4-13: Measurement of Tprop, 5 Volt Signaling

Revision 2.3

142

4.3.6. Physical Requirements

4.3.6.1. Routing and Layout Recommendations for Four-Layer
System Boards

The power pins have been arranged on the connector to facilitate layouts on four layer
system boards. A "split power plane" is permitted - creating a 3.3V island in the 5V
plane, which connects all the 3.3V PCI connector pins and may optionally have a power
distribution "finger" reaching to the power supply connector. Although this is a standard
technique, routing high speed signals directly over this plane split can cause signal
integrity problems. The split in the plane disrupts the AC return path for the signal
creating an impedance discontinuity.

A recommended solution is to arrange the signal level layouts so that no high speed
signal (e.g., 33 MHz) is referenced to both planes. Signal traces should either remain
entirely over the 3.3V plane or entirely over the 5V plane. Signals that must cross from
one domain to the other should be routed on the opposite side of the system board so that
they are referenced to the ground plane which is not split. If this is not possible, and
signals must be routed over the plane split, the two planes should be capacitively tied
together (5V plane decoupled directly to 3.3V plane) with 0.01 µF high-speed capacitors
for each four signals crossing the split and the capacitor should be placed not more than
0.25 inches from the point the signals cross the split.

4.3.6.2. System Board Impedance

There is no bare board impedance specification for system boards. The system designer
has two primary constraints in which to work:

• The length and signal velocity must allow a full round trip time on the bus within the
specified propagation delay of 10 ns. (Refer to Section 4.3.5.)

• The loaded impedance seen at any drive point on the network must be such that a PCI
output device (as specified by its V/I curve) can meet input device specifications with
a single reflection of the signal. This includes loads presented by add-in cards.

Operating frequency may be traded off for additional round trips on the bus to build
configurations that might not comply with the two constraints mentioned above. This
option is neither recommended nor specifically precluded.

Revision 2.3

143

4.3.7. Connector Pin Assignments

The PCI connector contains all the signals defined for PCI components, plus two pins
that are related to the connector only. These pins, PRSNT1# and PRSNT2#, are
described in Section 4.4.1. System boards must decouple both of these pins individually
to ground with 0.01 µF high-speed capacitors, because one or both of the pins also
provide an AC return path. These pins may not be bused or otherwise connected to each
other on the system board. Further use of these pins on the system board is optional. If
the system board design accesses these pins to obtain add-in card information, each pin
must have an appropriate pull-up resistor (of approximately 5 kΩ) on the system board.
The connector pin assignments are shown in Table 4-11. Pins labeled “Reserved” must
be left unconnected on all connectors.

Pin 38B is a special pin that has logical significance in PCI-X capable slots. In PCI-X
slots, pin 38B must be handled as indicated in the PCIXCAP Connection section of the
PCI-X Addendum to the PCI Local Bus Specification. For all other PCI connectors, this
pin must be treated in all respects as a standard ground pin; i.e., the connector pin must be
connected to the ground plane.

Pin 49B is a special purpose pin that has logical significance in 66-MHz-capable slots,
and, in such slots, it must be separately bused, pulled up, and decoupled as described in
Section 7.7.7. For all other PCI connectors, this pin must be treated in all respects as a
standard ground pin; i.e., the connector pin must be connected to the ground plane.

Revision 2.3

144

Table 4-11: PCI Connector Pinout

3.3V System Environment 5V System Environment

Pin Side B Side A Side B Side A Comments

1 -12V TRST# -12V TRST# 32-bit connector start

2 TCK +12V TCK +12V
3 Ground TMS Ground TMS
4 TDO TDI TDO TDI
5 +5V +5V +5V +5V
6 +5V INTA# +5V INTA#
7 INTB# INTC# INTB# INTC#
8 INTD# +5V INTD# +5V
9 PRSNT1# Reserved PRSNT1# Reserved
10 Reserved +3.3V (I/O) Reserved +5V (I/O)

11 PRSNT2# Reserved PRSNT2# Reserved
12 CONNECTOR KEY Ground Ground 3.3 volt key

13 CONNECTOR KEY Ground Ground 3.3 volt key

14 Reserved 3.3Vaux Reserved 3.3Vaux
15 Ground RST# Ground RST#
16 CLK +3.3V (I/O) CLK +5V (I/O)

17 Ground GNT# Ground GNT#
18 REQ# Ground REQ# Ground
19 +3.3V (I/O) PME# +5V (I/O) PME#
20 AD[31] AD[30] AD[31] AD[30]
21 AD[29] +3.3V AD[29] +3.3V
22 Ground AD[28] Ground AD[28]
23 AD[27] AD[26] AD[27] AD[26]
24 AD[25] Ground AD[25] Ground
25 +3.3V AD[24] +3.3V AD[24]
26 C/BE[3]# IDSEL C/BE[3]# IDSEL
27 AD[23] +3.3V AD[23] +3.3V
28 Ground AD[22] Ground AD[22]
29 AD[21] AD[20] AD[21] AD[20]
30 AD[19] Ground AD[19] Ground
31 +3.3V AD[18] +3.3V AD[18]
32 AD[17] AD[16] AD[17] AD[16]
33 C/BE[2]# +3.3V C/BE[2]# +3.3V
34 Ground FRAME# Ground FRAME#
35 IRDY# Ground IRDY# Ground
36 +3.3V TRDY# +3.3V TRDY#
37 DEVSEL# Ground DEVSEL# Ground
38 PCIXCAP STOP# Ground STOP#
39 LOCK# +3.3V LOCK# +3.3V
40 PERR# SMBCLK PERR# SMBCLK
41 +3.3V SMBDAT +3.3V SMBDAT
42 SERR# Ground SERR# Ground

Revision 2.3

145

Table 4-11: PCI Connector Pinout (continued)

3.3V System Environment 5V System Environment

Pin Side B Side A Side B Side A Comments

43 +3.3V PAR +3.3V PAR
44 C/BE[1]# AD[15] C/BE[1]# AD[15]
45 AD[14] +3.3V AD[14] +3.3V
46 Ground AD[13] Ground AD[13]
47 AD[12] AD[11] AD[12] AD[11]
48 AD[10] Ground AD[10] Ground
49 M66EN AD[09] Ground AD[09] 66 MHz / gnd

50 Ground Ground CONNECTOR KEY 5 volt key

51 Ground Ground CONNECTOR KEY 5 volt key

52 AD[08] C/BE[0]# AD[08] C/BE[0]#
53 AD[07] +3.3V AD[07] +3.3V
54 +3.3V AD[06] +3.3V AD[06]
55 AD[05] AD[04] AD[05] AD[04]
56 AD[03] Ground AD[03] Ground
57 Ground AD[02] Ground AD[02]
58 AD[01] AD[00] AD[01] AD[00]
59 +3.3V (I/O) +3.3V (I/O) +5V (I/O) +5V (I/O)

60 ACK64# REQ64# ACK64# REQ64#
61 +5V +5V +5V +5V
62 +5V +5V +5V +5V 32-bit connector end

CONNECTOR KEY CONNECTOR KEY 64-bit spacer
CONNECTOR KEY CONNECTOR KEY 64-bit spacer

63 Reserved Ground Reserved Ground 64-bit connector start

64 Ground C/BE[7]# Ground C/BE[7]#
65 C/BE[6]# C/BE[5]# C/BE[6]# C/BE[5]#
66 C/BE[4]# +3.3V (I/O) C/BE[4]# +5V (I/O)

67 Ground PAR64 Ground PAR64
68 AD[63] AD[62] AD[63] AD[62]
69 AD[61] Ground AD[61] Ground
70 +3.3V (I/O) AD[60] +5V (I/O) AD[60]
71 AD[59] AD[58] AD[59] AD[58]
72 AD[57] Ground AD[57] Ground
73 Ground AD[56] Ground AD[56]
74 AD[55] AD[54] AD[55] AD[54]
75 AD[53] +3.3V (I/O) AD[53] +5V (I/O)

76 Ground AD[52] Ground AD[52]
77 AD[51] AD[50] AD[51] AD[50]
78 AD[49] Ground AD[49] Ground
79 +3.3V (I/O) AD[48] +5V (I/O) AD[48]
80 AD[47] AD[46] AD[47] AD[46]
81 AD[45] Ground AD[45] Ground
82 Ground AD[44] Ground AD[44]

Revision 2.3

146

Table 4-11: PCI Connector Pinout (continued)

3.3V System Environment 5V System Environment

Pin Side B Side A Side B Side A Comments

83 AD[43] AD[42] AD[43] AD[42]
84 AD[41] +3.3V (I/O) AD[41] +5V (I/O)

85 Ground AD[40] Ground AD[40]
86 AD[39] AD[38] AD[39] AD[38]
87 AD[37] Ground AD[37] Ground
88 +3.3V (I/O) AD[36] +5V (I/O) AD[36]
89 AD[35] AD[34] AD[35] AD[34]
90 AD[33] Ground AD[33] Ground
91 Ground AD[32] Ground AD[32]
92 Reserved Reserved Reserved Reserved
93 Reserved Ground Reserved Ground
94 Ground Reserved Ground Reserved 64-bit connector end

Pins labeled "+3.3V (I/O)" and "+5V (I/O)" are special power pins for defining and driving
the PCI signaling rail on the Universal add-in card. On the system board, these pins are
connected to the main +3.3V or +5V plane, respectively.

Refer to Section 3.8.1. for special requirements for the connection of REQ64# on 32-bit-
only slot connectors.

Revision 2.3

147

4.4. Add-in Card Specification

4.4.1. Add-in Card Pin Assignment

The PCI connector contains all the signals defined for PCI components, plus two pins
that are related to the connector only. These are PRSNT1# and PRSNT2#. They are
used for two purposes: indicating that an add-in card is physically present in the slot and
providing information about the total power requirements of the add-in card. Table 4-12
defines the required setting of the PRSNT# pins for add-in cards.

Table 4-12: Present Signal Definitions

PRSNT1# PRSNT2# Add-in Card Configuration

Open Open No add-in card present

Ground Open Add-in card present, 25 W maximum

Open Ground Add-in card present, 15 W maximum

Ground Ground Add-in card present, 7.5 W maximum

In providing a power level indication, the add-in card must indicate total maximum
power consumption for the add-in card, including all supply voltages. The add-in cards
may optionally draw all this power from either the 3.3V or 5V power rail. Furthermore,
if the add-in card is configurable (e.g., sockets for memory expansion, etc.), the pin
strapping must indicate the total power consumed by a fully configured add-in card,
which may be more than that consumed in its shipping configuration.

Add-in cards that do not implement JTAG Boundary Scan are required to connect TDI
and TDO (pins 4A and 4B) so the scan chain is not broken.

Pin 38B is a special pin that has logical significance in PCI-X capable add-in cards. In
PCI-X slots, pin 38B must be handled as indicated in the PCIXCAP Connection section
of the PCI-X Addendum to the PCI Local Bus Specification. For all other PCI add-in
cards, this pin must be treated in all respects as a standard ground pin; i.e., the edge finger
must be plated and connected to the ground plane of the add-in card.

Pin 49B is a special purpose pin that has logical significance in 66-MHz-capable add-in
cards, and, in such add-in cards, it must be connected and decoupled as described in
Section 7.8. For all other add-in cards, this pin must be treated in all respects as a
standard ground pin; i.e., the edge finger must be plated and connected to the ground
plane of the add-in card.

Revision 2.3

148

Table 4-13: PCI Add-in Card Pinout

Universal Add-in Card 3.3V Add-in Card

Pin Side B Side A Side B Side A Comments

1 -12V TRST# -12V TRST# 32-bit start

2 TCK +12V TCK +12V
3 Ground TMS Ground TMS
4 TDO TDI TDO TDI
5 +5V +5V +5V +5V
6 +5V INTA# +5V INTA#
7 INTB# INTC# INTB# INTC#
8 INTD# +5V INTD# +5V
9 PRSNT1# Reserved PRSNT1# Reserved
10 Reserved +VI/O Reserved +3.3V
11 PRSNT2# Reserved PRSNT2# Reserved
12 KEYWAY KEYWAY 3.3V key

13 KEYWAY KEYWAY 3.3V key

14 Reserved 3.3Vaux Reserved 3.3Vaux
15 Ground RST# Ground RST#
16 CLK +VI/O CLK +3.3V
17 Ground GNT# Ground GNT#
18 REQ# Ground REQ# Ground
19 +VI/O PME# +3.3V PME#
20 AD[31] AD[30] AD[31] AD[30]
21 AD[29] +3.3V AD[29] +3.3V
22 Ground AD[28] Ground AD[28]
23 AD[27] AD[26] AD[27] AD[26]
24 AD[25] Ground AD[25] Ground
25 +3.3V AD[24] +3.3V AD[24]
26 C/BE[3]# IDSEL C/BE[3]# IDSEL
27 AD[23] +3.3V AD[23] +3.3V
28 Ground AD[22] Ground AD[22]
29 AD[21] AD[20] AD[21] AD[20]
30 AD[19] Ground AD[19] Ground
31 +3.3V AD[18] +3.3V AD[18]
32 AD[17] AD[16] AD[17] AD[16]
33 C/BE[2]# +3.3V C/BE[2]# +3.3V
34 Ground FRAME# Ground FRAME#
35 IRDY# Ground IRDY# Ground
36 +3.3V TRDY# +3.3V TRDY#
37 DEVSEL# Ground DEVSEL# Ground
38 PCIXCAP STOP# PCIXCAP STOP#
39 LOCK# +3.3V LOCK# +3.3V
40 PERR# SMBCLK PERR# SMBCLK
41 +3.3V SMBDAT +3.3V SMBDAT
42 SERR# Ground SERR# Ground

Revision 2.3

149

Table 4-13: PCI Add-in Card Pinout (continued)

Universal Add-in Card 3.3V Add-in Card

Pin Side B Side A Side B Side A Comments

43 +3.3V PAR +3.3V PAR
44 C/BE[1]# AD[15] C/BE[1]# AD[15]
45 AD[14] +3.3V AD[14] +3.3V
46 Ground AD[13] Ground AD[13]
47 AD[12] AD[11] AD[12] AD[11]
48 AD[10] Ground AD[10] Ground
49 M66EN AD[09] M66EN AD[09] 66 MHz /gnd

50 KEYWAY Ground Ground 5V key

51 KEYWAY Ground Ground 5V key

52 AD[08] C/BE[0]# AD[08] C/BE[0]#
53 AD[07] +3.3V AD[07] +3.3V
54 +3.3V AD[06] +3.3V AD[06]
55 AD[05] AD[04] AD[05] AD[04]
56 AD[03] Ground AD[03] Ground
57 Ground AD[02] Ground AD[02]
58 AD[01] AD[00] AD[01] AD[00]
59 +VI/O +VI/O +3.3V +3.3V
60 ACK64# REQ64# ACK64# REQ64#
61 +5V +5V +5V +5V
62 +5V +5V +5V +5V 32-bit end

KEYWAY KEYWAY 64-bit spacer

KEYWAY KEYWAY 64-bit spacer

63 Reserved Ground Reserved Ground 64-bit start

64 Ground C/BE[7]# Ground C/BE[7]#
65 C/BE[6]# C/BE[5]# C/BE[6]# C/BE[5]#
66 C/BE[4]# +VI/O C/BE[4]# +3.3V
67 Ground PAR64 Ground PAR64
68 AD[63] AD[62] AD[63] AD[62]
69 AD[61] Ground AD[61] Ground
70 +VI/O AD[60] +3.3V AD[60]
71 AD[59] AD[58] AD[59] AD[58]
72 AD[57] Ground AD[57] Ground
73 Ground AD[56] Ground AD[56]
74 AD[55] AD[54] AD[55] AD[54]
75 AD[53] +VI/O AD[53] +3.3V
76 Ground AD[52] Ground AD[52]
77 AD[51] AD[50] AD[51] AD[50]
78 AD[49] Ground AD[49] Ground
79 +VI/O AD[48] +3.3V AD[48]
80 AD[47] AD[46] AD[47] AD[46]
81 AD[45] Ground AD[45] Ground
82 Ground AD[44] Ground AD[44]

Revision 2.3

150

Table 4-13: PCI Add-in Card Pinout (continued)

Universal Add-in Card 3.3V Add-in Card

Pin Side B Side A Side B Side A Comments

83 AD[43] AD[42] AD[43] AD[42]
84 AD[41] +VI/O AD[41] +3.3V
85 Ground AD[40] Ground AD[40]
86 AD[39] AD[38] AD[39] AD[38]
87 AD[37] Ground AD[37] Ground
88 +VI/O AD[36] +3.3V AD[36]
89 AD[35] AD[34] AD[35] AD[34]
90 AD[33] Ground AD[33] Ground
91 Ground AD[32] Ground AD[32]
92 Reserved Reserved Reserved Reserved
93 Reserved Ground Reserved Ground
94 Ground Reserved Ground Reserved 64-bit end

Table 4-14: Pin Summary - 32-bit Add-in Card

Pin Type Universal Add-in Card 3.3V Add-in Card

Ground 18 (Note) 22 (Note)
+5 V 8 8

+3.3 V 12 17
I/O pwr 5 0

Reserv'd 4 4

NOTE:

If the PCIXCAP and M66EN pins are implemented, the number
of ground pins for a Universal add-in card is 16 and the number
of ground pins for a 3.3V add-in card is 20.

Table 4-15: Pin Summary - 64-bit Add-in Card (incremental pins)

Pin Type Universal Add-in Card 3.3V Add-in Card

Ground 16 16
+5 V 0 0

+3.3 V 0 6
I/O pwr 6 0

Reserv'd 5 5

Revision 2.3

151

Pins labeled "+VI/O" are special power pins for defining and driving the PCI signaling
rail on the Universal add-in card. On this add-in card, the PCI component's I/O buffers
must be powered from these special power pins only35—not from the other +3.3V or +5V
power pins.

4.4.2. Power Requirements

4.4.2.1. Decoupling

Under typical conditions, the Vcc plane to ground plane capacitance will provide
adequate decoupling for the Vcc connector pins. The maximum trace length from a
connector pad to the Vcc/GND plane via shall be 0.25 inches (assumes a 20 mil trace
width).

However, on the Universal add-in card, it is likely that the I/O buffer power rail will not
have adequate capacitance to the ground plane to provide the necessary decoupling. Pins
labeled "+VI/O" should be decoupled to ground with an average of 0.047 µF per pin.

Additionally, all +3.3V pins and any unused +5V and VI/O pins on the PCI edge
connector provide an AC return path and must have plated edge fingers and be coupled to
the ground plane on the add-in card as described below to ensure they continue to
function as efficient AC reference points:

1. The decoupling must average at least 0.01 µF (high-speed) per Vcc pin.

2. The trace length from pin pad to capacitor pad shall be no greater than 0.25 inches
using a trace width of at least 0.02 inches.

3. There is no limit to the number of pins that can share the same capacitor provided
that requirements 1 and 2 are met.

All edge fingers must be plated and all ground edge fingers must be connected to the
ground plane on the add-in card.

4.4.2.2. Power Consumption

The maximum power allowed for any add-in card is 25 watts, and represents the total
power drawn from all power rails provided at the connector (+3.3V, +5V, +VI/O, +12V,
-12V, +3.3Vaux). The add-in card may optionally draw all this power from either the
+3.3V or +5V rail.

It is anticipated that many systems will not provide a full 25 watts per connector for each
power rail, because most add-in cards will typically draw much less than this amount.
For this reason, it is recommended that add-in cards that consume more than 10 watts
power up in and reset to a reduced-power state that consumes 10 watts or less. While in

35 When “5V tolerant parts” are used on the Universal add-in card, its I/O buffers may optionally be
connected to the 3.3V rail rather than the "I/O" designated power pins; but high clamp diodes may still be
connected to the "I/O" designated power pins. (Refer to the last paragraph of Section 4.2.1.2. - "Clamping
directly to the 3.3V rail with a simple diode must never be used in the 5V signaling environment.") Since
the effective operation of these high clamp diodes may be critical to both signal quality and device
reliability, the designer must provide enough "I/O" designated power pins on a component to handle the
current spikes associated with the 5V maximum AC waveforms (Section 4.2.1.3.).

Revision 2.3

152

this state, the add-in card must provide full access to its PCI Configuration Space and
must perform required bootstrap functions, such as basic text mode on a video add-in
card. All other add-in card functions can be suspended if necessary. This power saving
state can be achieved in a variety of ways. For example:

• Clock rates on the add-in card can be reduced, which reduces performance but does
not limit functionality.

• Power planes to non-critical parts could be shut off with a FET, which could limit
functional capability.

After the driver for the add-in card has been initialized, it may place the add-in card into a
fully powered, full function/performance state using a device dependent mechanism of
choice (probably register based). In advanced power managed systems, the device driver
may be required to report the target power consumption before fully enabling the add-in
card in order to allow the system to determine if it has a sufficient power budget for all
add-in cards in the current configuration.

Add-in cards must never source any power back to the system board, except in the case
where an add-in card has been specifically designed to provide a given system’s power.
In some cases, add-in cards capable of 3.3V PCI signaling have multiple mechanisms that
indirectly source power back to the system and will violate this requirement if not
properly controlled. For example, add-in cards containing components with bus clamps
to the 3.3V rail may create a “charge pump” which directs excess bus switching energy
back into the system board. Alternately, I/O output buffers operating on the 3.3V rail,
but used in a 5V signaling environment, may bleed the excess charge off the bus and into
the 3.3V power net when they drive the bus “high” after it was previously driven to the
5V rail. Unintentional power sourcing by any such mechanism must be managed by
proper decoupling and sufficient local load on the supply (bleed resistor or otherwise) to
dissipate any power “generated” on the add-in card. This requirement does not apply to
noise generated on the power rail as long as the net DC current accumulated over any two
clock periods is zero.

4.4.3. Physical Requirements

4.4.3.1. Trace Length Limits

Trace lengths from the top of the add-in card’s edge connector to the PCI device are as
follows:

• The maximum trace lengths for all 32-bit interface signals are limited to 1.5 inches
for 32-bit and 64-bit add-in cards. This includes all signal groups (refer to Section
2.2.) except those listed as “System Pins,” “Interrupt Pins,” “SMBus,” and “JTAG
Pins.”

• The trace lengths of the additional signals used in the 64-bit extension are limited to
2 inches on all 64-bit add-in cards.

• The trace length for the PCI CLK signal is 2.5 inches ± 0.1 inches for 32-bit and
64-bit add-in cards and must be routed to only one load.

Revision 2.3

153

4.4.3.2. Routing Recommendations for Four-Layer Add-in Cards

The power pins have been arranged on the connector to facilitate layouts on four layer
add-in cards. A "split power plane" is permitted, as described in Section 4.3.6.1.
Although this is a standard technique, routing high speed signals directly over this plane
split can cause signal integrity problems. The split in the plane disrupts the AC return
path for the signal creating an impedance discontinuity.

A recommended solution is to arrange the signal level layouts so that no high speed
signal (e.g., 33 MHz) is referenced to both planes. Signal traces should either remain
entirely over the 3.3V plane or entirely over the 5V plane. Signals that must cross from
one domain to the other should be routed on the opposite side of the add-in card so that
they are referenced to the ground plane which is not split. If this is not possible, and
signals must be routed over the plane split, the two planes should be capacitively tied
together (5V plane decoupled directly to 3.3V plane) with 0.01 µF high-speed capacitors
for each four signals crossing the split and the capacitor should be placed not more than
0.25 inches from the point the signals cross the split.

4.4.3.3. Impedance

The unloaded characteristic impedance (Z0) of the shared PCI signal traces on the add-in

card shall be controlled to be in the 60 Ω - 100 Ω range if the device input capacitance
(Cin) exceeds 8 pF. If Cin is 8 pF or less, the range for Z0 is 51 Ω - 100 Ω. The trace
velocity must be between 150 ps/inch and 190 ps/inch.

4.4.3.4. Signal Loading

Shared PCI signals must be limited to one load on the add-in card. Violation of add-in
card trace length or loading limits will compromise system signal integrity. It is
specifically a violation of this specification for add-in cards to:

• Attach an expansion ROM directly (or via bus transceivers) on any PCI pins.

• Attach two or more PCI devices on an add-in card, unless they are placed behind a
PCI-to-PCI bridge.

• Attach any logic (other than a single PCI device) that "snoops" PCI pins.

• Use PCI component sets that place more than one load on each PCI pin; e.g., separate
address and data path components.

• Use a PCI component that has more than 10 pF capacitance per pin.

• Attach any pull-up resistors or other discrete devices to the PCI signals, unless they
are placed behind a PCI-to-PCI bridge.

The SMBus signal group is exempt from this requirement. Refer to Section 8.2.5 for
SMBus signal loading requirements.

Revision 2.3

154

Revision 2.3

155

Chapter 5
Mechanical Specification

5.1. Overview
The PCI add-in card is based on a raw add-in card design (see Figures 5-1 to 5-4) that is
easily implemented in existing chassis designs from multiple manufacturers. PCI add-in
cards have three basic form factors: standard length, short length, and low profile. The
standard length card provides 49 square inches of real estate. The fixed and variable
height short length cards were chosen for panel optimization to provide the lowest cost
for a function. The fixed and variable height short cards also provide the lowest cost to
implement in a system, the lowest energy consumption, and allow the design of smaller
systems. The interconnect for the PCI add-in card has been defined for both the 32-bit
and 64-bit interfaces.

PCI add-in cards and connectors are keyed to manage the 5V to 3.3V transition. The
basic 32-bit connector contains 120 pins. The logical numbering of pins shows 124 pin
identification numbers, but four pins are not present and are replaced by the keying
location. In one orientation, the connector on the system board is keyed to accept 3.3V
system signaling environment add-in cards; turned 180 degrees, the key is located to
accept 5V system signaling add-in cards. Universal add-in cards, add-in cards built to
work in both 3.3V and 5V system signaling environments, have two key slots so that
they can plug into either connector. A 64-bit extension, built onto the same connector
molding, extends the total number of pins to 184. The 32-bit connector subset defines
the system signaling environment. 32-bit add-in cards and 64-bit add-in cards are inter-
operable within the system's signaling voltage classes defined by the keying in the 32-bit
connector subset. A 32-bit add-in card identifies itself for 32-bit transfers on the 64-bit
connector. A 64-bit add-in card in a 32-bit connector must configure for 32-bit transfers.

Maximum add-in card power dissipation is encoded on the PRSNT1# and PRSNT2#
pins of the add-in card. This hard encoding can be read by system software upon
initialization. The system's software can then make a determination whether adequate
cooling and supply current is available in that system for reliable operation at start-up
and initialization time. Supported power levels and their encoding are defined in
Chapter 4.

The PCI add-in card includes a mounting bracket for add-in card location and retention.
The backplate is the interface between the add-in card and the system that provides for
cable escapement. The retainer fastens to the front edge of the PCI add-in card to
provide support via a standard PCI add-in card guide.

Revision 2.3

156

5.2. Add-in Card Physical Dimensions and Tolerances
The maximum component height on the primary component side of the PCI add-in card
is not to exceed 0.570 inches (14.48 mm). The maximum component height on the back
side of the add-in card is not to exceed 0.105 inches (2.67 mm). Datum A on the
illustrations is used to locate the add-in card to the system board and to the frame
interfaces: the back of the frame and the add-in card guide. Datum A is carried through
the locating key on the card edge and the locating key on the connector.

See Figures 5-1 through 5-12 for PCI add-in card physical dimensions. This revision of
this specification supports only 3.3V or Universal keyed add-in cards.

Revision 2.3

157

(3
X)

[.4
00

]

10
.1

6
[.4

00
]

1
[.0

39
]

(2
X)

 2
50

.7
1

[9
.8

70
]

TO
LE

RA
NC

E
UN

LE
SS

 O
TH

ER
W

IS
E

NO
TE

D
±

0.
12

7
m

m

CO
M

PO
NE

NT
 A

ND
 T

RA
CE

FR
EE

 A
RE

A
(B

OT
H

SI
DE

S)

(2
X)

[.1
50

]3.
81

89
.5

3
(2

X)
[3

.5
25

]

79
.1

4
RE

F
BE

VE
L

RE
Q'

D
[3

.1
2]

[0
.0

05
in]

10
.1

6

5.
08

 (S
HO

RT
 C

AR
D)

[.2
00

]

31
2

(L
ON

G
CA

RD
)

[1
2.

28
3]

17
4.

63
 (S

HO
RT

 C
AR

D)
[6

.8
75

]

5.
08

[.2
00

] 12
.7

[.5
00

]

4
[.1

57
]

7.
24

[.2
85

]

CO
M

PO
NE

NT
 A

ND
 T

RA
CE

 F
RE

E
AR

EA
 (S

ID
E

A
ON

LY
)*

85
.4

[3
.3

62
]

10
6.

68
[4

.2
00

]
88

.9
[3

.5
]10

.1
6

[.4
00

]
0.

35
[.0

14
]

12
.0

6
[.4

75
]

41
.2

1
[1

.6
22

]

56
.2

1
[2

.2
13

]

(2
X)

 4
8.

71
[1

.9
18

]

56
.2

1
[2

.2
13

]

(3
X)

 1
2.

07
[.4

75
]

* R
EQ

UI
RE

D
ON

LY
 IF

 U
SI

NG
 B

RA
CK

ET
 W

IT
H

M
OU

NT
IN

G
TA

BS

B
B

A

(4
X)

3.

18
 ±

0.
08

[.1
25

]

Figure 5-1: PCI Raw Add-in Card (3.3V, 32-bit)

Revision 2.3

158

-A-

5,08
[200]

12,7
[500]

4
[157]

(4X) 1
[039]

COMPONENT AND TRACE
FREE AREA (BOTH SIDES)

-B-

12,07
[.475]

COMPONENT AND TRACE
FREE AREA (BOTH SIDES)

[1.918]
(2X) 48,7141,2

[1.622] 56,21
[2.213]

[6.600]
167,64

(3X)

(2X)
[150]
3,81

MAX. LENGTH

119,91
[4.721]

MIN. LENGTH

SEE NOTE

(SIDE A ONLY)*
TRACE FREE AREA

COMPONENT AND

(2X)
[125]

Ø 3,175 ± 0.08 [3.632]
85,4

106,68 MAX. HEIGHT
[4.200]

7,24
[285]

36,07 MIN. HEIGHT
[1.420]

TOLERANCE UNLESS OTHERWISE NOTED: ± 0.127 (.005)

NOTES:

1

2

COMPONENT AND TRACE FREE AREA (BOTH SIDES) ENDS AT
DATUM B FOR CARDS SHORTER THAN 120,19mm (4.732in.).
OTHERWISE, IT ENDS AT THE CARD EDGE.

79,14
[3.116]

REF. BEVEL REQ'D

(2X) ± 0.08Ø 3,175
[125]

*REQUIRED ONLY IF USING BRACKET WITH MOUNTING TABS

1

Figure 5-2: PCI Raw Variable Height Short Add-in Card (3.3V, 32-bit)

Revision 2.3

159

5.08
[200]

12.7
[500]

4
[157]

(4X) 1
[039]

COMPONENT AND
TRACE FREE AREA

(BOTH SIDES)

COMPONENT AND TRACE
FREE AREA (BOTH SIDES)

48.71
[1.918]

41.2
[1.622] 56.21

[2.213]

167.64
[6.600]

MAX. LENGTH

(4X) 12.07
[.475]

3.81
[150]

167.64
[6.600]

MIN. LENGTH

COMPONENT AND
TRACE FREE AREA

(SIDE A ONLY)*

85.4
[3.632]

106.68 MAX. HEIGHT
[4.200]

7.24
[285]

36.07 MIN. HEIGHT
[1.420]

122.32
BEVEL REQ'D [4.82]

(2X) Ø 3.175 ± 0.08
[125]

* REQUIRED ONLY IF USING BRACKET WITH MOUNTING TABS
TOLERANCE UNLESS OTHERWISE NOTED ± 0.127 (.005)

A

B

Figure 5-3: PCI Raw Variable Height Short Add-in Card (3.3V, 64-bit)

Revision 2.3

160

3X
 1

2.
07

[.4
75

]

2X
 3

.8
1

[.1
50

]

79
.1

4
R

E
F

B
E

V
E

L
R

E
Q

'D
[3

.1
16

]

6X
 1

[.0
39

]

11
9,

91
 (M

A
X

. L
E

N
G

TH
 M

D
1)

[4
.7

21
]

4.
19

[.1
65

]

.0
75

64
.4

1
[2

.5
36

]
M

A
X

. H
E

IG
H

T

41
.2

1
[1

.6
22

]

48
.7

1
[1

.9
18

]

56
.2

1
[2

.2
13

]

N
O

TE
: C

O
M

P
O

N
E

N
T

A
N

D
 T

R
A

C
E

 F
R

E
E

 A
R

E
A

 (B
O

TH
 S

ID
E

S
).

O
P

TI
O

N
A

L
A

R
E

A
 A

V
A

IL
A

B
LE

 F
O

R
 I/

O
 C

O
N

N
E

C
TO

R
S

 W
H

E
N

TA
B

S
 A

R
E

 N
O

T
U

S
E

D
 T

O
 A

TT
A

C
H

 B
R

A
C

K
E

T
TO

 C
A

R
D

.

C
O

M
P

O
N

E
N

T
A

N
D

 T
R

A
C

E
 F

R
E

E
 A

R
E

A
 (S

ID
E

 A
 O

N
LY

).

LE
N

G
TH

 C
A

R
D

S
.

K
E

E
P

O
U

TS
 S

H
O

W
N

 A
LO

N
G

 M
IN

IM
U

M

A
LO

N
G

 P
E

R
IM

E
TE

R
 O

F
V

A
R

IA
B

LE
 H

E
IG

H
T,

 V
A

R
IA

B
LE

C
O

M
P

O
N

E
N

T
A

N
D

 T
R

A
C

E
 F

R
E

E
 A

R
E

A
 (B

O
TH

 S
ID

E
S

)

H
E

IG
H

T,
 N

D
I C

A
R

D
S

 F
O

R
 C

LA
R

IT
Y

 O
N

LY
.

5.
TO

LE
R

A
N

C
E

 U
N

LE
S

S
 O

TH
E

R
W

IS
E

 N
O

TE
D

0.

12
7

m
m

 ±
.0

05
 in

. .

4.

IN
 T

H
E

 S
Y

S
TE

M
 A

N
D

 C
A

R
D

 R
E

TE
N

TI
O

N
.

H
E

IG
H

T
D

IM
E

N
S

IO
N

 T
O

 A
ID

 IN
 A

IR
 F

LO
W

 C
O

N
TR

O
L

IT
 IS

 R
E

C
O

M
M

E
N

D
E

D
 T

H
A

T
C

A
R

D
S

 B
E

 M
A

D
E

 T
O

 F
U

LL

C
O

M
P

O
N

E
N

T
A

N
D

TR
A

C
E

 F
R

E
E

 A
R

E
A

(B
O

TH
 S

ID
E

S
)

16
7.

64
 (M

A
X

. L
E

N
G

TH
 M

D
2)

[6
.6

00
]

24
1.

3
(M

A
X

. L
E

N
G

TH
 M

D
3)

[9
.5

00
]

24

7.
24

[.2
85

]

53
.9

[2
.1

22
]

12
.7

[.5
00

]

C
O

M
P

O
N

E
N

T
S

ID
E

 B
(P

R
IM

A
R

Y
 S

ID
E

)

C
O

M
P

O
N

E
N

T
S

ID
E

 A
(S

E
C

O
N

D
A

R
Y

 S
ID

E
)

4.
48

[.5
70

]
4.

24
[.1

67
]

P
R

IM
A

R
Y

 S
ID

E
 O

F
P

R
IN

TE
D

 C
IR

C
U

IT
 B

O
A

R
D

[1
.4

20
]

M
IN

. H
E

IG
H

T

3

1

2
1 2 3

B

A

(2
X

)
 3

.1
8

0.

08
[.1

25
 ±

1.
57

 R
E

F
[.0

62
]

B

C

Figure 5-4: PCI Raw Low Profile Add-in Card (3.3V, 32-bit)

Revision 2.3

161

20˚ TYP

1.81 +0.25/-0.38 TYP
[.071 +.010/-.015]

0.25 +0.13/-0.254 TYP
[.010 +.005/-.010]

1.77 MAX. OVER PLATING
[.07]

Figure 5-5: PCI Add-in Card Edge Connector Bevel

Revision 2.3

162

1.
57

 R
EF

.
[0

62
]

10
0.

33
 ±

0.
25

[3
.9

50
 ±

.0
10

]

CA
RD

BR
AC

KE
T

I/O
 C

ON
NE

CT
OR

EN
VE

LO
PE

RE
TA

IN
ER

NO
TE

:
IT

 IS
 H

IG
HL

Y
RE

CO
M

M
EN

DE
D

TH
AT

 A
DD

-IN
 A

DA
PT

ER
 C

AR
D

DE
SI

GN
ER

S
LO

CA
TE

TH
EI

R
I/O

 C
ON

NE
CT

OR
S

W
IT

HI
N

TH
E

VO
LU

M
E

DE
FI

NE
D

SO
 T

HA
T

TH
EI

R
AD

D-
IN

 C
AR

D
W

IL
L

FI
T

OU
T

TH
RO

UG
H

TH
E

I/O
 P

OR
TS

 O
F

LE
GA

CY
 P

CI
M

EC
HA

NI
CA

L
PA

CK
AG

ES
.

OU
TS

ID
E

FL
AT

 S
UR

FA
CE

 O
F

BR
AC

KE
T

CO
M

PO
NE

NT
SI

DE
 B

31
3.

78
 (R

EF
)

LO
NG

 C
AR

D
[1

2.
35

4]

17
6.

41
 (R

EF
)

SH
OR

T
CA

RD
[6

.9
45

]

58
.0

9
±

.2
5

[2
.2

87
 ±

.0
10

]

1.
02

 [.
04

] E
ND

 O
F

CA
RD

 T
O

IN
SI

DE
 O

F
BR

AC
KE

T

34
0.

74
 ±

1.
57

[1
3.

41
5

±
.0

61
]

AA

B
B

Figure 5-6: PCI Add-in Card Assembly (3.3V)

Revision 2.3

163

-B
-

-A
-

12
1,

79
 R

EF
[4

.7
95

]

51
,5

1
[2

.2
08

]

12
,0

7
[.4

75
]

-B
-

(M
AX

. L
EN

GT
H

M
D1

)

58
,0

9
 ±

.2
5

[2
.2

87
]

 ±
.0

10

(M
AX

. L
EN

GT
H

M
D2

)
[6

.6
74

]
16

9,
52

 R
EF

24
3,

18
[9

.5
74

](M
AX

. L
EN

GT
H

M
D3

)

1,
02

[.0
40

]

-C
-

CO
NN

EC
TO

R
OP

EN
IN

G

CH
AS

SI
S

KE
EP

OU
T

5,
08

[.2
00

]
1,

577
[.0

62
]

EN
D

OF
 C

AR
D

TO
IN

SI
DE

 O
F

BR
AC

KE
T

-C
-

-A
-

64
,4

4
[2

.5
37

]

CA
RD

BR
AC

KE
T

14
,7

1
[.5

79
]

OU
TS

ID
E

FL
AT

SU
RF

AC
E

OF
 B

RA
CK

ET

0,
37

[.0
15

]

[.4
75

]
12

,0
7

[1
.6

72
]

42
,4

7

Figure 5-7: Low Profile PCI Add-in Card Assembly (3.3V)

Revision 2.3

164

R
1.

3
[.0

51
]

4
PL

AC
ES

45
 ±

10
o

4.
11

[.1
62

]

2
PL

AC
ES

4.
12

RE
F

[.1
62

]

R
1.

91
[.0

75
]

14
.3

[.5
63

]

[.1
00

]
2.

54

12
0.

2
[4

.7
25

]
11

2.
75

[4
.4

39
]

0.
51

[.0
20

]

2.
92

[.1
15

]

2
PL

AC
ES

45
 ±

10
o

3.
94

[.1
55

]

21
.5

9
[.8

50
]

18
.4

2
8

[.7
25

]
17

.1
5

RE
F.

[.6
75

]3.
17

 R
EF

[.1
25

]

0.
76

 ±
.2

5
[.0

30
 ±

.0
10

]

B B

10
.1

1
[.3

98
]

85
.4

[3
.3

62
]

[.1
56

]
3.

97

7.
94

[.3
13

]

[.2
00

]
5.

08
R

1.
3

4
PL

AC
ES

[.0
5]

o
5

±2

[.3
70

]
9.

39

12
.5

7
[.4

95
]

NO
TE

S:
1.

 M
AT

ER
IA

L:
 .0

34
 T

HK
 (2

0
GA

)
C1

01
0/

10
20

 C
RS

 Z
IN

C
PL

AT
E

2
PL

AC
ES

SC
AL

E
 4

.0
00

SE
CT

IO
N

B-
B

0.
41

 M
IN

.
[.0

16
]

R
0.

13
[.0

05
]

-0
.0

0
[+

.0
05

]

+0
.1

3

[-.
00

0]

[-.
00

0]

+0
.0

8
DI

A

[+
.0

03
]

-0
.0

0
[.0

97
]

2.
46

o
30

5
2

PL
AC

ES
oo

R

11
.4

3
[.4

50
]

5.
08

[2
00

]
7.

24
[.2

85
]10
.9

2
[.4

30
]

13
.9

7
[.5

50
]

17
.1

5
[.6

75
]

18
.4

2
[.7

25
]

4.
42

[.1
74

]

[.1
50

]
3.

81
 2

 P
LA

CE
S

ST
AR

T
OF

 3
0

 A
NG

LE
 F

OR
M

o Ao A

O.
66

 M
IN

.
[.0

26
]

Figure 5-8: PCI Standard Bracket36, 37

36 It is highly recommended that add-in card designers implement I/O brackets which mount on the
backside of PCI add-in cards as soon as possible to reduce their exposure to causing EMC leakage in
systems.

37 It is highly recommended that system designers initiate requirements which include the use of this new
design by their add-in card suppliers.

Revision 2.3

165

Figure 5-9: PCI Low Profile Bracket

Revision 2.3

166

TOLERANCE UNLESS OTHERWISE NOTED 0.25 [.010]

10.16
[.400]

10.16
[.400]

1.57 TYP
[.062]

18.71
[.74]

R .341
[13.43]

97.16
[3.825]

(2X) R 2.5
[.10]

(2X) Ø 2.25 ± 0.05 5.8 MIN.
[.098]

11.98 REF
[.5]5.08

[.200]
32.04 REF
[1.3]

3.81
[.150]

89.54
[3.525]

20.0557
[.790]

5.09
[.200]

1.78
[.070]

5.08
[.200] 25.1357

[.990]

6.5
[.26]

6.07
[.239]

1.57
[.062]

14.27
[.562]

37.13
[1.462]

NOTE: CONTINUED USE OF THE ISA RETAINER DESCRIBED IN REVISION 2.1 OF THIS SPECIFICATION IS PERMITTED, BUT IT IS HIGHLY RECOMMENDED
THAT ADD-IN CARD DESIGNERS IMPLEMENT THIS DESIGN AS SOON AS POSSIBLE TO AVOID INSTALLATION PROBLEMS WHEN LARGE I/O CONNECTORS
ARE PRESENT. THIS PART SHOULD BE CONSIDERED AS AN ALTERNATIVE PART FOR FULL LENGTH ADD-IN CARDS IN LEGACY SYSTEMS ONLY. IT IS
HIGHLY RECOMMENDED THAT IF THE FULL CONNECTOR VOLUME DEFINED IN FIGURE 5-11 IS USED, THAT ADD-IN CARDS LESS THAN FULL LENGTH
SHOULD BE DESIGNED TO AVOID USE OF THE ISA RETAINER.

C

B

A

1.57 ± .13
[.062]

Figure 5-10: PCI Standard Retainer

Revision 2.3

167

0.
35

[.0
14

]

88
.9

[3
.5

0]

25
.4

[1
.0

]

NO
TE

S:

1
IT

 IS
 H

IG
HL

Y
RE

CO
M

M
EN

DE
D

FO
R

AD
D-

IN
 C

AR
D

DE
SI

GN
ER

S
TO

 L
OC

AT
E

TH
EI

R
I/O

 C
ON

NE
CT

OR
S

W
IT

H
TH

E
81

.9
m

m
 L

EN
GT

H
TO

 E
NC

OM
PA

SS
 L

EG
AC

Y
SY

ST
EM

S

IT
 IS

 H
IG

HL
Y

RE
CO

M
M

EN
DE

D
TH

AT
 S

YS
TE

M
 D

ES
IG

NE
RS

IM
PL

EM
EN

T
TH

E
88

.9
m

m
 L

EN
GT

H
I/O

 W
IN

DO
W

 A
S

SO
ON

AS
 P

OS
SI

BL
E

TO
 A

CC
OM

M
OD

AT
E

TH
E

NE
W

 M
UL

TI
-P

OR
T

AD
D-

IN
 C

AR
D

DE
SI

GN
S.

2 3
SY

ST
EM

S
BU

IL
T

AF
TE

R
JU

LY
 1

99
7

M
US

T
CO

M
PL

Y
W

IT
H

TH
E

NE
W

 8
8.

9m
m

 L
EN

GT
H

I/O
 W

IN
DO

W
.

10 [.3
9]

2
10

.1
6

[.4
0]

IN
SI

DE
 S

UR
FA

CE

3

2
3

R
88

.9
[3

.5
0]

20 [.7
9]

LE
GA

CY

3
13

.6
2

[.3
56

]
IN

SI
DE

 S
UR

FA
CE

1

25
.4

[1
.0

]

81
.9

[3
.2

24
]

1
3

0.
35

[.0
14

]

DE
TA

IL
A

DE
TA

IL
A

12
.0

6
[.4

7]

4
AD

D-
IN

 C
AR

DS
 U

SI
NG

 T
HE

 F
UL

L
EX

TE
NT

 O
F

TH
IS

CO
NN

EC
TO

R
VO

LU
M

E
SH

OU
LD

 D
ES

IG
N

CA
RD

S
US

IN
G

LE
SS

TH
AN

 F
UL

L
LE

NG
TH

 A
ND

 N
OT

 U
SE

 T
HE

 IS
A

RE
TA

IN
ER

.

Figure 5-11: I/O Window Height

Revision 2.3

168

Figure 5-12: Add-in Card Installation with Large I/O Connector

Revision 2.3

169

5.3. Connector Physical Description
There are four connectors that can be used depending on the PCI implementation. The
differences between connectors are 32 bit and 64 bit, and the 3.3V and 5V signaling
environments. A key differentiates the signaling environment voltages. The same
physical connector is used for the 32-bit signaling environments. In one orientation, the
key accepts 3.3V add-in cards. Rotated 180 degrees, the connector accepts 5V signaling
add-in cards. The pin numbering of the connector changes for the different signaling
environments to maintain the same relative position of signals on the connector (see
Figures 5-14, 5-15, 5-17, and 5-19 for system board layout details).

In the connector drawings, the recommended board layout details are given as nominal
dimensions. Layout detail tolerancing should be consistent with the connector supplier's
recommendations and good engineering practice.

See Figures 5-13 through 5-19 for connector dimensions and layout recommendations.
See Figures 5-20 through 5-24 for card edge connector dimensions and tolerances.
Tolerances for add-in cards are given so that interchangeable add-in cards can be
manufactured.

Revision 2.3

170

9.
02

[.3

55
) M

AX
4.

41
[.1

74
]

1.
27 [.0
50

]
[.0

70
]

±
.0

01
1.

78
 ±

0.
3

2.
54

[.1
00

]

1.
27 [.0
50

]

2.
41

[.0
95

]
63

.2
5

[2
.4

90
]

14
.9

9
[.5

90
]

1.
78

 ±
0.

3
[.0

70
]

±
.0

01

FI
TS

 B
OA

RD
S

11
.4

3
[.4

50
]

7.
62

[.3
00

]

2.
54

[.1
00

]

[3
.4

0]
84

.8
4

64
.7

7
[2

.5
50

]

[.0
70

]
1.

78

15
.4

9
[.6

10
] (6

X)
1.

52
[.0

60
]

(2
X)

 4
.5

7
[.1

80
]

Figure 5-13: 32-bit Connector

Revision 2.3

171

64
.7

7
[2

.5
50

]
(2

X)
 1

.9
[.0

75
]

I/O
 P

AN
EL

DI
RE

CT
IO

N

PI
N

B2

PI
N

B1

3.
81

[.1
50

]

(3
X)

 2
.5

4
[.1

00
]

PI
N

A2

PI
N

A1

60
.9

6
[2

.4
00

]

(5
8X

) 1
.2

7
[.0

50
]

(2
X)

 2
.4

4
+.

05
/-.

03
 D

IA
[.0

96
 +

.0
02

/-.
00

1]
NO

N-
PL

AT
ED

 T
HR

U
HO

LE PI
N

A6
1

PI
N

B6
1

PI
N

A6
2

PI
N

B6
2

12
.7

0
[.5

0]

(1
20

X)
 1

.0
2

±.
08

 D
IA

.
[.0

40
 ±

.0
03

]

Figure 5-14: 5V/32-bit Connector Layout Recommendation

Revision 2.3

172

60
.9

6
[2

.4
00

]

(2
X)

 2
.4

4
+.

05
/-.

03
 D

IA
[.0

96
 +

.0
02

/-.
00

1]
NO

N-
PL

AT
ED

 T
HR

U
HO

LE

PI
N

A1

PI
N

B1

PI
N

A2

PI
N

B2

PI
N

B6
2

PI
N

B6
1

±
.0

8
DI

A.
[.0

40
 ±

.0
03

]

3.
81

[.1
50

]

(2
X)

 2
.5

4
[.1

00
]

12
.7

0
[.5

00
]

(5
8X

) 1
.2

7
[.0

50
]

I/O
 P

AN
EL

DI
RE

CT
IO

N
64

.7
7

[2
.5

50
]

PI
N

A6
2

PI
N

A6
1

(2
X)

 1
.9

1
[.0

75
]

Figure 5-15: 3.3V/32-bit Connector Layout Recommendation

Revision 2.3

173

43
.1

8
[1

.7
00

]

(8
X)

 3
.4

3
[.1

35
]

58
.1

7
[2

.2
90

]

64
.7

7
[2

.5
50

]

1.
27

[.0
50

]

FI
TS

 C
AR

DS
1.

57
 ±

[.0
62

 ±
.0

08
]

7.
62

[.3
00

]

9.
02

 M
AX

[.3
55

]

(3
X)

 4
.5

7
[.1

80
]

81
.2

8
[3

.2
00

]

2.
54

[.1
00

]

17
.3

9
[.6

85
]

12
8.

02
[5

.0
40

]

14
.9

9
[.5

90
]

1.
78

[.0
70

]

2.
41

[.0
95

]

1.
78

 ±
.0

3
[.0

70
 ±

.0
01

]
1.

37
 ±

.0
8

[.0
54

 ±
.0

03
]

Figure 5-16: 5V/64-bit Connector

Revision 2.3

174

(3
X)

 2
.4

4
+0

5/
-.0

3
DI

A
[.0

96
] +

.0
02

/-.
00

1
NO

N-
PL

AT
ED

 T
HR

U
HO

LE PI
N

A1

PI
N

A2

PI
N

B1

PI
N

B2

3.
81

[.1
50

]

(3
X)

 2
.5

4
[.1

00
]

I/O
 P

AN
EL

DI
RE

CT
IO

N
[2

.5
5]

64
.7

7

60
.9

6
[2

.4
00

]
(8

8X
) 1

.2
7

[.0
50

]
PI

N
A6

1
PI

N
A6

2

(2
X)

 1
.9

1
[.0

75
]

12
.7

0
[.5

00
]

59
.6

9
[2

.3
50

]

39
.3

7
[.5

50
]

PI
N

B6
1

PI
N

B6
2

PI
N

B9
3

PI
N

B9
4

PI
N

A9
3

PI
N

A9
4

(1
84

X)
 1

.0
2

 ±
.0

8
DI

A
[.0

40
]

±
.0

03

1.
91

[.0
75

]

Figure 5-17: 5V/64-bit Connector Layout Recommendation

Revision 2.3

175

FI
TS

 B
OA

RD
S

1.
57

 ±
.0

2
[.0

62
 ±

.0
08

]

7.
62

[.3
00

]

9.
02

 M
AX

[.3
55

] (3
X)

 4
.5

7
[.1

80
]

10
7.

95
[4

.2
50

]

64
.7

7
[2

.5
50

]
18

.2
9

[.7
20

]

2.
54

[.1
00

]

(8
X)

 1
.5

2
[.0

60
]

15
.4

9
[.6

10
]

12
8.

02
[5

.0
40

]

63
.2

[2
.4

88
]

14
.9

9
[.5

90
]

16
.2

9
[.6

41
]

2
[.0

79
]2.

41
[.0

95
]

1.
78

 ±
.0

3
±

1.
37

 ±
.0

8
±

41
.8

6
[1

.6
48

]

Figure 5-18: 3.3V/64-bit Connector

Revision 2.3

176

(5
X)

 1
.9

1
[.0

75
]

60
.9

6
[2

.4
00

]

PI
N

A6
2

43
.1

8
[1

.7
00

]

12
.7

0
[.5

00
]

39
.3

7
[1

.5
50

]

PI
N

B2

PI
N

B9
4

(3
X)

 2
.4

4
+.

05
/-.

03
 D

IA
[.0

96
 +

.0
02

/-.
00

1]
NO

N-
PL

AT
ED

TH
RU

 H
OL

E

PI
N

B9
3

PI
N

B6
2

PI
N

B6
1

3.
81

[.1
50

]

(3
X)

 2
.5

4
[.1

00
]

PI
N

B1

PI
N

A2

PI
N

A1

(8
8X

) 1
.2

7
[.0

50
]

I/O
 P

AN
EL

DI
RE

CT
IO

N
64

.7
7

[2
.5

50
]

PI
N

A9
4

PI
N

A9
3

PI
N

A6
1

(1
84

X)
 1

.0
2

 ±
.0

8
DI

A.
[.0

40
 ±

.0
03

]

Figure 5-19: 3.3V/64-bit Connector Layout Recommendation

Revision 2.3

177

63
.7

[2
.5

08
]

15
.4

4
[0

.6
08

]

0.
05

 [0
.0

02
]

M M
A

0.
15

 [0
.0

06
]

TY
PI

CA
L

AL
L

TA
BS

BO
TH

 S
ID

ES
 T

AB
 T

O
TA

B

BO
TH

 S
ID

ES
 T

AB
 T

O
DA

TU
M

TY
PI

CA
L

AL
L

TA
BS

B1
4

B6
2

O.
38

1X
45

˚ C
HA

M
FE

R
TY

P
[0

.0
15

]

(2
X)

 0
.9

27
 ±

0.
02

5
[0

.0
36

 ±
0.

00
1]

32
 B

IT
 /

3
VO

LT
2

X
60

 C
ON

NE
CT

OR

(2
X)

CO
M

PO
NE

NT
SI

DE
 B

B1
1

12
.7

[0
.5

00
]

60
.9

7
[2

.4
00

]

56
.2

1
[2

.2
13

]

O.
38

1X
45

˚

B0
1

1.
27

[0
.0

50
]

62
.8

7
[2

.4
75

]

AA

1.
91

[0
.0

75
]

14
.6

1
[0

.5
75

]

Figure 5-20: 3.3V/32-bit Add-in Card Edge Connector Dimensions and Tolerances

Revision 2.3

178

63
.7

[2
.5

08
]

15
.4

4
[0

.6
08

]

10
6.

88
[4

.2
08

]

0.
05

 [0
.0

02
]

M M
A

0.
15

 [0
.0

06
]

TY
PI

CA
L

AL
L

TA
BS

BO
TH

 S
ID

ES
 T

AB
 T

O
TA

B

BO
TH

 S
ID

ES
 T

AB
 T

O
TA

B
TY

PI
CA

L
AL

L
TA

BS

65
.8

4
[2

.5
92

]

B1
4

B6
2

O.
38

1X
45

˚
[0

.0
15

]
CH

AM
FE

R
TY

P

(2
X)

 0
.9

27
 ±

0.
02

5
[0

.0
36

 ±
0.

00
1]

B0
1

64
 B

IT
 /

3
VO

LT
2

X
92

 C
ON

NE
CT

OR

(2
X)

10
6.

06
[4

.1
75

]

B6
3

B9
4

CO
M

PO
NE

NT
SI

DE
 B

39
.3

7
[1

.5
50

]

B1
1

12
.7

[0
.5

00
]

60
.8

7
[2

.4
75

]

62
.8

7
[2

.4
75

]

66
.6

8
[2

.6
25

]

56
.2

1
[2

.2
13

]

1.
91

[0
.0

75
]

1.
27

[0
.0

50
]

AA

14
.6

1
[0

.5
75

]

Figure 5-21: 3.3V/64-bit Add-in Card Edge Connector Dimensions and Tolerances

Revision 2.3

179

48
.2

[1
.9

0]
15

.4
4

[0
.6

08
]

63
.7

[2
.5

08
]

44
.4

5
[1

.7
50

]

1.
91

[.0
75

]

46
.3

5
[1

.8
25

]
12

.7
[.5

00
]

(2
X)

50
.1

7
[1

.9
75

]
14

.6
1

[.5
75

]
12

.7
[.5

00
]

56
.2

1
[2

.2
13

]
62

.8
7

[2
.4

75
]

1.
27

[.0
50

]

32
 B

IT
 /

UN
IV

ER
SA

L
2

X
60

 C
ON

NE
CT

OR

(4
X)

 0
.9

27
 ±

0.
02

5
[0

.0
36

 ±

[0
.0

15
]

CH
AM

FE
R

TY
P

O.
38

1X
45

˚

B0
1

B1
1

B1
4

B4
9

B5
2

B6
2

BO
TH

 S
ID

ES
 T

AB
 T

O
DA

TU
M

BO
TH

 S
ID

ES
 T

AB
 T

O
TA

B
TY

PI
CA

L
AL

L
TA

BS

0.
15

 [0
.0

06
]

A
MM

0.
05

 [0
.0

02
]

CO
M

PO
NE

NT
SI

DE
 B

A A

Figure 5-22: Universal 32-bit Add-in Card Edge Connector Dimensions and Tolerances

Revision 2.3

180

63
.7

[2
.5

08
]

15
.4

4
[0

.6
08

]

0.
05

 [0
.0

02
]

M M
A

0.
15

 [0
.0

06
]

TY
PI

CA
L

AL
L

TA
BS

BO
TH

 S
ID

ES
 T

AB
 T

O
TA

B

BO
TH

 S
ID

ES
 T

AB
 T

O
DA

TU
M

TY
PI

CA
L

AL
L

TA
BS

B1
4

B6
2

O.
38

1X
45

˚ C
HA

M
FE

R
TY

P
[0

.0
15

]

(2
X)

 0
.9

27
 ±

0.
02

5
[0

.0
36

 ±
0.

00
1]

32
 B

IT
 /

3
VO

LT
2

X
60

 C
ON

NE
CT

OR

(2
X)

CO
M

PO
NE

NT
SI

DE
 B

B1
1

12
.7

[0
.5

00
]

60
.9

7
[2

.4
00

]

56
.2

1
[2

.2
13

]

O.
38

1X
45

˚

B0
1

1.
27

[0
.0

50
]

62
.8

7
[2

.4
75

]

AA

1.
91

[0
.0

75
]

14
.6

1
[0

.5
75

]

Figure 5-23: Universal 64-bit Add-in Card Edge Connector Dimensions and Tolerances

Revision 2.3

181

CRITICAL CONTACT AREA

TYP BOTH SIDES

5.18 ± 0.13
[0.20 ± 0.005]

12.07 ± 0.13
[.475 ± 0.005]

6.35 ± 0.13
[.250 ± 0.005]

9.52 ± 0.13
[.380 ± 0.005]

0.508 ± 0.025
[.02 ± 0.001]

TYP BOTH SIDES

0.508 ± 0.025

TYP BOTH SIDES

1.27
[0.050]

R TYP
BOTH SIDES
(OPTIONAL)

B

Figure 5-24: PCI Add-in Card Edge Connector Contacts

Revision 2.3

182

5.4. Connector Physical Requirements

Table 5-1: Connector Physical Requirements

Part Materials

Connector Housing High-temperature thermoplastic, UL flammability rating
94V-0, color: white.

Contacts Phosphor bronze.

Contact Finish 0.000030 inch minimum gold over 0.000050 inch
minimum nickel in the contact area. Alternate finish:
gold flash over 0.000040 inch (1 micron) minimum
palladium or palladium-nickel over nickel in the contact
area.

A

O.52 ± 0.38

CONTACT POINT 3

A

.0205 ± .0015

CRITICAL CONTACT AREA

CRITICAL CONTACT AREA

3
0.381
.015

3
0.381
.015

H

.170 ± .020

4.32 ± 0.50

H

R 1.50 FREE STATE

.062

14

SCALE 10/1

21

SECTION H-H

R FULL3

.004 ± .001 (CONTACT POINT)

0.10 ± .025 FROM HIGH POINT OF CROWN

3

Figure 5-25: Connector Contact Detail

Revision 2.3

183

5.5. Connector Performance Specification

Table 5-2: Connector Mechanical Performance Requirements

Parameter Specification

Durability 100 mating cycles without physical damage or
exceeding low level contact resistance requirement
when mated with the recommended add-in card edge.

Mating Force 6 oz. (1.7 N) max. avg. per opposing contact pair using
MIL-STD-1344, Method 2013.1 and gauge per
MIL-C-21097 with profile as shown in add-in card
specification.

Contact Normal Force 75 grams minimum.

Table 5-3: Connector Electrical Performance Requirements

Parameter Specification

Contact Resistance (low signal level) 30 mΩ max. initial, 10 mΩ max.
increase through testing. Contact resistance, test per
MIL-STD-1344, Method 3002.1.

Insulation Resistance 1000 MΩ min. per MIL STD 202, Method 302,
Condition B.

Dielectric Withstand
Voltage

500 VAC RMS. per MIL-STD-1344, Method D3001.1
Condition 1.

Capacitance 2 pF max. @ 1 MHz.

Current Rating 1 A, 30 °C rise above ambient.

Voltage Rating 125 V.

Certification UL Recognition and CSA Certification required.

Table 5-4: Connector Environmental Performance Requirements

Parameter Specification

Operating Temperature -40 °C to 105 °C

Thermal Shock -55 °C to 85 °C, 5 cycles per MIL-STD-1344, Method
1003.1.

Flowing Mixed Gas Test Battelle, Class II. Connector mated with an add-in card
and tested per Battelle method.

Revision 2.3

184

5.6. System Board Implementation
Two types of system board implementations are supported by the PCI add-in card
design: expansion connectors mounted on the system board and expansion connectors
mounted on a riser card.

See Figure 5-26 for system board details. The system board drawing shows the relative
locations of the PCI 3.3V and 5V connector datums. Both 3.3V and 5V connectors are
shown on the system board to concisely convey the dimensional information.
Frequently, a given system would incorporate either the 3.3V or the 5V PCI connector,
but not both. The standard card spacing for PCI connectors is 0.8 inches.

See Figures 5-27, 5-28, 5-29, 5-30, 5-31, 5-32, and 5-33 for riser card details.

Revision 2.3

185

BU
LK

HE
AD

LO
CA

TI
ON

3.
3V

 P
CI

CO
NN

EC
TO

R

5V
 P

CI
CO

NN
EC

TO
R

RE
ST

RI
CT

ED
CO

M
PO

NE
NT

 H
EI

GH
T

5.
08

 [.
20

0]
 M

AX
88

.9
0

[3
.5

0]
 M

AX
.

61
.4

7
[2

.4
2]

 M
IN

.
VA

RI
AB

LE
 S

HO
RT

 C
AR

D
SL

OT

SH
OR

T
CA

RD
 S

LO
T

70
.1

0
[2

.7
6]

 M
IN

.

20
7.

52
 [8

.1
7]

 M
IN

LO

NG
 C

AR
D

SL
OT

RE
ST

RI
CT

ED
 C

OM
PO

NE
NT

HE
IG

HT
 1

5.
24

 [.
60

0]
 M

AX
.

20
.3

2
[.8

00
]

20
.3

2
[.8

00
]

8.
89

 [.
35

2]

48
.2

 [1
.9

0]
61

.4
7

[2
.4

20
]

RE
ST

RI
CT

ED
 C

OM
PO

NE
NT

 H
EI

GH
T

5.
08

 [.
20

0]
 M

AX
. O

N
32

 B
IT

 P
LA

NA
R

FO
R

64
-B

IT
 C

AR
D

IN
TE

RO
PE

RA
BI

LI
TY

3.
3V

 P
CI

 P
RI

M
AR

Y
RE

FE
RE

NC
E

DA
TU

M
5V

 P
CI

 P
RI

M
AR

Y
RE

FE
RE

NC
E

DA
TU

M

Figure 5-26: PCI Connector Location on System Board

Revision 2.3

186

84
.8

4
[3

.4
0]

(2
X)

 4
.5

7
[.1

80
]

(6
X)

 3
.4

3
[.1

35
]

11
.4

3
[.4

50
]

FI
TS

 C
AR

DS
63

.2
5

[2
.4

90
]

1.
27

[.0
50

]

1.
27

[.0
50

]

4.
41

[.1
74

]

1.
57

±
.0

2
[.0

62
 ±

.0
08

]

7.
62

[.3
00

]

9.
02

 M
AX

[.3
55

]

81
.2

8
[3

.2
00

]

2.
54

[.1
00

]

17
.3

9
[.6

85
]

14
.9

9
[.5

90
]

1.
78

[.0
70

]

2.
41

[.0
95

]

1.
78

 ±
.0

3
[.0

70
 ±

.0
01

]

2.
54

[.1
00

]

Figure 5-27: 32-bit PCI Riser Connector38

38 It is highly recommended that LPX system chassis designers utilize the PCI riser connector when
implementing riser cards on LPX systems and using connectors on 0.800-inch spacing.

Revision 2.3

187

81
.2

8
[3

.2
00

]
(2

X)
 1

.9 [.0
75

]

I/O
 P

AN
EL

DI
RE

CT
IO

N

PI
N

B2

PI
N

B1

3.
81

[.1
50

]

(3
X)

 2
.5

4 [.1
00

]

PI
N

A1

[2
.4

00
]

60
.9

6

(5
8X

) 1
.2

7
[.0

50
]

(2
X)

 2
.4

4
+.

05
/-.

03
 D

IA
[.0

96
] +

.0
02

/-.
00

1
NO

N-
PL

AT
ED

 T
HR

UH
OL

E

PI
N

A6
1

PI
N

B6
1

PI
N

A6
2

PI
N

B6
2

[.5
0]

12
.7

0

(1
20

X)
 1

.0
2 [.0

40
]

+ _ _+
.0

03
.0

8
DI

A.

PI
N

A2

Figure 5-28: 32-bit/5V PCI Riser Connector Footprint

Revision 2.3

188

60
.9

6
[2

.4
00

]

(2
X)

 2
.4

4
+.

05
/-.

03
 D

IA
[.0

96
 +

.0
02

/-.
00

1]
NO

N-
PL

AT
ED

 T
HR

U
HO

LE

PI
N

A1

PI
N

B1

PI
N

A2

PI
N

B2
PI

N
B6

2

PI
N

B6
1

±
.0

8
DI

A.
[.0

40
 ±

.0
03

]

3.
81

[.1
50

]

(3
X)

 2
.5

4
[.1

00
]

12
.7

0
[.5

00
]

(5
8X

) 1
.2

7
[.0

50
]

I/O
 P

AN
EL

DI
RE

CT
IO

N
81

.2
8

[3
.2

00
]

PI
N

A6
2

PI
N

A6
1

(2
X)

 1
.9

[.0
75

]

Figure 5-29: 32-bit/3.3V PCI Riser Connector Footprint

Revision 2.3

189

43
.1

8
[1

.7
00

]

(8
X)

 3
.4

3
[.1

35
]

58
.1

7
[2

.2
90

]

64
.7

7
[2

.5
50

]

1.
27

[.0
50

]

FI
TS

 C
AR

DS
1.

57
 ±

 .0
2

[.0
62

 ±
 .0

08
]

7.
62

[.3
00

]

9.
02

 M
AX

[.3
55

]

(3
X)

 4
.5

7
[.1

80
]

81
.2

8
[3

.2
00

]

2.
54

[.1
00

]

17
.3

9
[.6

85
]

12
8.

02
[5

.0
40

]

14
.9

9
[.5

90
]

1.
78

[.0
70

]

2.
41

[.0
95

]

1.
78

 ±
 .0

3
[.0

70
 ±

 .0
01

]
1.

37
 ±

 .0
8

[.0
54

 ±
 .0

03
]

Figure 5-30: 64-bit/5V PCI Riser Connector38

Revision 2.3

190

(3
X)

 2
.4

4
+0

5/
-.0

3
DI

A
[.0

96
 +

.0
02

/-.
00

1]
NO

N-
PL

AT
ED

 T
HR

U
HO

LE PI
N

A1

PI
N

A2

PI
N

B1

PI
N

B2

3.
81

[.1
50

]

(3
X)

 2
.5

4
[.1

00
]

I/O
 P

AN
EL

DI
RE

CT
IO

N
[3

.2
00

]
81

.2
8

60
.9

6
[2

.4
00

]
(8

8X
) 1

.2
7

[.0
50

]
PI

N
A6

1

PI
N

A6
2

(2
X)

 1
.9

1
[.0

75
]

12
.7

0
[.5

00
]

43
.1

8
[1

.7
00

]

39
.3

7
[.5

50
]

PI
N

B6
1

PI
N

B6
2

PI
N

B9
3

PI
N

B9
4

PI
N

A9
3

PI
N

A9
4

(1
84

X)
 1

.0
2

 ±
[.0

40
 ±

.0
03

]

1.
91

 [.
07

5]

Figure 5-31: 64-bit/5V PCI Riser Connector Footprint

Revision 2.3

191

FI
TS

 C
AR

DS
1.

57
 ±

 .0
2

[.0
62

 ±
 .0

08
]

7.
62

[.3
00

]

9.
02

 M
AX

[.3
55

]

(3
X)

 4
.5

7
[.1

80
]

12
4.

46
[4

.9
00

]

81
.2

8
[3

.2
00

]

2.
54

[.1
00

]

(8
X)

 1
.5

2
[.0

62
]

17
.3

9
[.6

85
]

12
8.

02
[5

.0
40

]

63
.2

[2
.4

88
]

14
.9

9
[.5

90
]

1.
78

[.0
70

]

2.
41

[.0
95

]

1.
78

 ±
 .0

3
[.0

70
 ±

 .0
01

]
1.

37
 ±

 .0
8

[.0
54

 ±
 .0

03
]

41
.8

6
[1

.6
48

]

Figure 5-32: 64-bit/3.3V PCI Riser Connector38

Revision 2.3

192

(2
X)

 1
.9

1
[.0

75
]

77
.4

7
[3

.0
50

]

PI
N

A6
2

43
.1

8
[1

.7
00

]

12
.7

0
[.5

00
]

39
.3

7
[1

.5
50

]

PI
N

B2

PI
N

B9
4

(3
X)

 2
.4

4
+.

05
/-.

03
 D

IA
[.0

96
 +

.0
02

/-.
00

1]
NO

N-
PL

AT
ED

TH
RU

 H
OL

E

PI
N

B9
3

PI
N

B6
2

PI
N

B6
1

3.
81

[.1
50

]

(3
X)

 2
.5

4
[.1

00
]

PI
N

B1

PI
N

A2

PI
N

A1

(8
8X

) 1
.2

7
[.0

50
]

I/O
 P

AN
EL

DI
RE

CT
IO

N
81

.2
8

[3
.2

00
]

PI
N

A9
4

PI
N

A9
3

PI
N

A6
1

(1
84

X)
 1

.0
2

 ±
.0

8
DI

A.
[.0

40
 ±

.0
03

]

Figure 5-33: 64-bit/3.3V PCI Riser Connector Footprint

Revision 2.3

193

Chapter 6
Configuration Space

This chapter defines the programming model and usage rules for the configuration
register space in PCI compliant devices. This chapter is limited to the definition of PCI
compliant components for a wide variety of system types. System dependent issues for
specific platforms, such as mapping various PCI address spaces into host CPU address
spaces, access ordering rules, requirements for host-to-PCI bus bridges, etc., are not
described in this chapter.

The intent of the PCI Configuration Space definition is to provide an appropriate set of
configuration "hooks" which satisfies the needs of current and anticipated system
configuration mechanisms, without specifying those mechanisms or otherwise placing
constraints on their use. The criteria for these configuration "hooks" are:

• Sufficient support to allow future configuration mechanisms to provide:

• Full device relocation, including interrupt binding

• Installation, configuration, and booting without user intervention

• System address map construction by device independent software

• Minimize the silicon burden created by required functions

• Leverage commonality with a template approach to common functions, without
precluding devices with unique requirements

All PCI devices (except host bus bridges) must implement Configuration Space.
Multifunction devices must provide a Configuration Space for each function
implemented (refer to Section 6.2.1.).

Revision 2.3

194

6.1. Configuration Space Organization
This section defines the organization of Configuration Space registers and imposes a
specific record structure or template on the 256-byte space. This space is divided into a
predefined header region and a device dependent region.39 Devices implement only the
necessary and relevant registers in each region. A device's Configuration Space must be
accessible at all times, not just during system boot.

The predefined header region consists of fields that uniquely identify the device and
allow the device to be generically controlled. The predefined header portion of the
Configuration Space is divided into two parts. The first 16 bytes are defined the same
for all types of devices. The remaining bytes can have different layouts depending on
the base function that the device supports. The Header Type field (located at offset 0Eh)
defines what layout is provided. Currently three Header Types are defined, 00h which
has the layout shown in Figure 6-1, 01h which is defined for PCI-to-PCI bridges and is
documented in the PCI to PCI Bridge Architecture Specification, and 02h which is
defined for CardBus bridges and is documented in the PC Card Standard40.

System software may need to scan the PCI bus to determine what devices are actually
present. To do this, the configuration software must read the Vendor ID in each possible
PCI "slot." The host bus to PCI bridge must unambiguously report attempts to read the
Vendor ID of non-existent devices. Since 0FFFFh is an invalid Vendor ID, it is adequate
for the host bus to PCI bridge to return a value of all 1's on read accesses to
Configuration Space registers of non-existent devices. (Note that these accesses will be
terminated with a Master-Abort.)

All PCI devices must treat Configuration Space write operations to reserved registers as
no-ops; that is, the access must be completed normally on the bus and the data discarded.
Read accesses to reserved or unimplemented registers must be completed normally and a
data value of 0 returned.

Figure 6-1 depicts the layout of a Type 00h predefined header portion of the 256-byte
Configuration Space. Devices must place any necessary device specific registers after
the predefined header in Configuration Space. All multi-byte numeric fields follow
little-endian ordering; that is, lower addresses contain the least significant parts of the
field. Software must take care to deal correctly with bit-encoded fields that have some
bits reserved for future use. On reads, software must use appropriate masks to extract
the defined bits, and may not rely on reserved bits being any particular value. On writes,
software must ensure that the values of reserved bit positions are preserved; that is, the
values of reserved bit positions must first be read, merged with the new values for other
bit positions and the data then written back. Section 6.2. describes the registers in the
Type 00h predefined header portion of the Configuration Space.

39 The device dependent region contains device specific information and is not described in this document.

40 The PC Card Standard is available from PCMCIA and contact information can be found at
http://www.pc-card.com

Revision 2.3

195

Figure 6-1: Type 00h Configuration Space Header

All PCI compliant devices must support the Vendor ID, Device ID, Command, Status,
Revision ID, Class Code, and Header Type fields in the header. Refer to Section 6.2.4.
for the requirements for Subsystem ID and Subsystem Vendor ID. Implementation of
the other registers in a Type 00h predefined header is optional (i.e., they can be treated
as reserved registers) depending on device functionality. If a device supports the
function that the register is concerned with, the device must implement it in the defined
location and with the defined functionality.

Revision 2.3

196

6.2. Configuration Space Functions
PCI has the potential for greatly increasing the ease with which systems may be
configured. To realize this potential, all PCI devices must provide certain functions that
system configuration software can utilize. This section also lists the functions that need
to be supported by PCI devices via registers defined in the predefined header portion of
the Configuration Space. The exact format of these registers (i.e., number of bits
implemented) is device specific. However, some general rules must be followed. All
registers must be capable of being read, and the data returned must indicate the value
that the device is actually using.

Configuration Space is intended for configuration, initialization, and catastrophic error
handling functions. Its use should be restricted to initialization software and error
handling software. All operational software must continue to use I/O and/or Memory
Space accesses to manipulate device registers.

6.2.1. Device Identification

Five fields in the predefined header deal with device identification. All PCI devices are
required to implement these fields. Generic configuration software will be able to easily
determine what devices are available on the system's PCI bus(es). All of these registers
are read-only.

Vendor ID This field identifies the manufacturer of the device. Valid
vendor identifiers are allocated by the PCI SIG to ensure
uniqueness. 0FFFFh is an invalid value for Vendor ID.

Device ID This field identifies the particular device. This identifier is
allocated by the vendor.

Revision ID This register specifies a device specific revision identifier.
The value is chosen by the vendor. Zero is an acceptable
value. This field should be viewed as a vendor defined
extension to the Device ID.

Header Type This byte identifies the layout of the second part of the
predefined header (beginning at byte 10h in Configuration
Space) and also whether or not the device contains multiple
functions. Bit 7 in this register is used to identify a multi-
function device. If the bit is 0, then the device is single
function. If the bit is 1, then the device has multiple
functions. Bits 6 through 0 identify the layout of the second
part of the predefined header. The encoding 00h specifies the
layout shown in Figure 6-1. The encoding 01h is defined for
PCI-to-PCI bridges and is defined in the document PCI to
PCI Bridge Architecture Specification. The encoding 02h is
defined for a CardBus bridge and is documented in the PC
Card Standard. All other encodings are reserved.

Revision 2.3

197

Class Code The Class Code register is read-only and is used to identify
the generic function of the device and, in some cases, a
specific register-level programming interface. The register is
broken into three byte-size fields. The upper byte (at offset
0Bh) is a base class code which broadly classifies the type of
function the device performs. The middle byte (at offset 0Ah)
is a sub-class code which identifies more specifically the
function of the device. The lower byte (at offset 09h)
identifies a specific register-level programming interface (if
any) so that device independent software can interact with the
device. Encodings for base class, sub-class, and programming
interface are provided in Appendix D. All unspecified
encodings are reserved.

6.2.2. Device Control

The Command register provides coarse control over a device's ability to generate and
respond to PCI cycles. When a 0 is written to this register, the device is logically
disconnected from the PCI bus for all accesses except configuration accesses. All
devices are required to support this base level of functionality. Individual bits in the
Command register may or may not be implemented depending on a device’s
functionality. For instance, devices that do not implement an I/O Space will not
implement a writable element at bit location 0 of the Command register. Devices
typically power up with all 0's in this register, but Section 6.6. explains some exceptions.
Figure 6-2 shows the layout of the register and Table 6-1 explains the meanings of the
different bits in the Command register.

Interrupt Disable

01234

Reserved

515 678

IO Space

910

Fast Back-to-Back Enable
SERR# Enable

Reserved

Parity Error Response
VGA Palette Snoop

Memory Write and Invalidate Enable
Special Cycles

Bus Master

Memory Space

Figure 6-2: Command Register Layout

Revision 2.3

198

Table 6-1: Command Register Bits

Bit Location Description

0 Controls a device's response to I/O Space accesses. A value of 0
disables the device response. A value of 1 allows the device to
respond to I/O Space accesses. State after RST# is 0.

1 Controls a device's response to Memory Space accesses. A value of
0 disables the device response. A value of 1 allows the device to
respond to Memory Space accesses. State after RST# is 0.

2 Controls a device's ability to act as a master on the PCI bus. A value
of 0 disables the device from generating PCI accesses. A value of 1
allows the device to behave as a bus master. State after RST# is 0.

3 Controls a device's action on Special Cycle operations. A value of 0
causes the device to ignore all Special Cycle operations. A value of 1
allows the device to monitor Special Cycle operations. State after
RST# is 0.

4 This is an enable bit for using the Memory Write and Invalidate
command. When this bit is 1, masters may generate the command.
When it is 0, Memory Write must be used instead. State after RST# is
0. This bit must be implemented by master devices that can generate
the Memory Write and Invalidate command.

5 This bit controls how VGA compatible and graphics devices handle
accesses to VGA palette registers. When this bit is 1, palette
snooping is enabled (i.e., the device does not respond to palette
register writes and snoops the data). When the bit is 0, the device
should treat palette write accesses like all other accesses. VGA
compatible devices should implement this bit. Refer to Section 3.10.
for more details on VGA palette snooping.

Revision 2.3

199

Table 6-1: Command Register Bits (continued)

Bit Location Description

6 This bit controls the device's response to parity errors. When the bit is
set, the device must take its normal action when a parity error is
detected. When the bit is 0, the device sets its Detected Parity Error
status bit (bit 15 in the Status register) when an error is detected, but
does not assert PERR# and continues normal operation. This bit's
state after RST# is 0. Devices that check parity must implement this
bit. Devices are still required to generate parity even if parity checking
is disabled.

7 Hardwire this bit to 0.41

8 This bit is an enable bit for the SERR# driver. A value of 0 disables
the SERR# driver. A value of 1 enables the SERR# driver. This bit's
state after RST# is 0. All devices that have an SERR# pin must
implement this bit. Address parity errors are reported only if this bit
and bit 6 are 1.

9 This optional read/write bit controls whether or not a master can do
fast back-to-back transactions to different devices. Initialization
software will set the bit if all targets are fast back-to-back capable. A
value of 1 means the master is allowed to generate fast back-to-back
transactions to different agents as described in Section 3.4.2. A value
of 0 means fast back-to-back transactions are only allowed to the
same agent. This bit's state after RST# is 0.

10 This bit disables the device from asserting INTx#. A value of 0
enables the assertion of its INTx# signal. A value of 1 disables the
assertion of its INTx# signal. This bit’s state after RST# is 0. Refer to
Section 6.8.1.3 for control of MSI.

11-15 Reserved.

41 This bit cannot be assigned any new meaning in new designs. In an earlier version of this specification,
bit 7 was used and devices may have hardwired it to 0, 1, or implemented a read/write bit.

Revision 2.3

200

6.2.3. Device Status

The Status register is used to record status information for PCI bus related events. The
definition of each of the bits is given in Table 6-2 and the layout of the register is shown
in Figure 6-3. Devices may not need to implement all bits, depending on device
functionality. For instance, a device that acts as a target, but will never signal Target-
Abort, would not implement bit 11. Reserved bits should be read-only and return zero
when read.

Reads to this register behave normally. Writes are slightly different in that bits can be
reset, but not set. A one bit is reset whenever the register is written, and the write data in
the corresponding bit location is a 1. For instance, to clear bit 14 and not affect any
other bits, write the value 0100_0000_0000_0000b to the register.

15 14 13 12 11 10 9 8 7 6 5 4 3 0

Interrupt Status
Capabilities List
66 MHz Capable
Reserved
Fast Back-to-Back Capable
Master Data Parity Error
DEVSEL timing

00 - fast
01 - medium
10 - slow

Signaled Target Abort
Received Target Abort
Received Master Abort
Signaled system Error
Detected Parity Error

Reserved

Figure 6-3: Status Register Layout

Revision 2.3

201

Table 6-2: Status Register Bits

Bit Location Description

0-2 Reserved.

3 This read-only bit reflects the state of the interrupt in the device. Only
when the Interrupt Disable bit in the command register is a 0 and this
Interrupt Status bit is a 1, will the device’s INTx# signal be asserted.
Setting the Interrupt Disable bit to a 1 has no effect on the state of this
bit.

4 This optional read-only bit indicates whether or not this device
implements the pointer for a New Capabilities linked list at offset 34h.
A value of zero indicates that no New Capabilities linked list is
available. A value of one indicates that the value read at offset 34h is
a pointer in Configuration Space to a linked list of new capabilities.
Refer to Section 6.7. for details on New Capabilities.

5 This optional read-only bit indicates whether or not this device is
capable of running at 66 MHz as defined in Chapter 7. A value of zero
indicates 33 MHz. A value of 1 indicates that the device is 66 MHz
capable.

6 This bit is reserved42.

7 This optional read-only bit indicates whether or not the target is
capable of accepting fast back-to-back transactions when the
transactions are not to the same agent. This bit can be set to 1 if the
device can accept these transactions and must be set to 0 otherwise.
Refer to Section 3.4.2. for a complete description of requirements for
setting this bit.

8 This bit is only implemented by bus masters. It is set when three
conditions are met: 1) the bus agent asserted PERR# itself (on a read)
or observed PERR# asserted (on a write); 2) the agent setting the bit
acted as the bus master for the operation in which the error occurred;
and 3) the Parity Error Response bit (Command register) is set.

9-10 These bits encode the timing of DEVSEL#. Section 3.6.1. specifies
three allowable timings for assertion of DEVSEL#. These are
encoded as 00b for fast, 01b for medium, and 10b for slow (11b is
reserved). These bits are read-only and must indicate the slowest time
that a device asserts DEVSEL# for any bus command except
Configuration Read and Configuration Write.

42 In Revision 2.1 of this specification, this bit was used to indicate whether or not a device supported User
Definable Features.

Revision 2.3

202

Table 6-2: Status Register Bits (continued)

Bit Location Description

11 This bit must be set by a target device whenever it terminates a
transaction with Target-Abort. Devices that will never signal Target-
Abort do not need to implement this bit.

12 This bit must be set by a master device whenever its transaction is
terminated with Target-Abort. All master devices must implement this
bit.

13 This bit must be set by a master device whenever its transaction
(except for Special Cycle) is terminated with Master-Abort. All master
devices must implement this bit.

14 This bit must be set whenever the device asserts SERR#. Devices
who will never assert SERR# do not need to implement this bit.

15 This bit must be set by the device whenever it detects a parity error,
even if parity error handling is disabled (as controlled by bit 6 in the
Command register).

6.2.4. Miscellaneous Registers

This section describes the registers that are device independent and only need to be
implemented by devices that provide the described function.

CacheLine Size

This read/write register specifies the system cacheline size in units of DWORDs. This
register must be implemented by master devices that can generate the Memory Write and
Invalidate command (refer to Section 3.1.1.). The value in this register is also used by
master devices to determine whether to use Read, Read Line, or Read Multiple
commands for accessing memory (refer to Section 3.1.2.).

Slave devices that want to allow memory bursting using cacheline wrap addressing mode
(refer to Section 3.2.2.2.) must implement this register to know when a burst sequence
wraps to the beginning of the cacheline.

This field must be initialized to 0 at RST#.

A device may limit the number of cacheline sizes that it can support. For example, it
may accept only powers of 2 less than 128. If an unsupported value is written to the
CacheLine Size register, the device should behave as if a value of 0 was written.

Latency Timer

This register specifies, in units of PCI bus clocks, the value of the Latency Timer for this
PCI bus master (refer to Section 3.5.4.). This register must be implemented as writable
by any master that can burst more than two data phases. This register may be
implemented as read-only for devices that burst two or fewer data phases, but the
hardwired value must be limited to 16 or less. A typical implementation would be to
build the five high-order bits (leaving the bottom three as read-only), resulting in a timer
granularity of eight clocks. At RST#, the register must be initialized to 0 (if
programmable).

Revision 2.3

203

Built-in Self Test (BIST)

This optional register is used for control and status of BIST. Devices that do not support
BIST must always return a value of 0 (i.e., treat it as a reserved register). A device
whose BIST is invoked must not prevent normal operation of the PCI bus. Figure 6-4
shows the register layout and Table 6-3 describes the bits in the register.

7 6 5 4 0123

R svd

Start B IST
BIS T capable

Figure 6-4: BIST Register Layout

Table 6-3: BIST Register Bits

Bit Location Description

7 Return 1 if device supports BIST. Return 0 if the device is not BIST
capable.

6 Write a 1 to invoke BIST. Device resets the bit when BIST is complete.
Software should fail the device if BIST is not complete after 2 seconds.

5-4 Reserved. Device returns 0.

3-0 A value of 0 means the device has passed its test. Non-zero values
mean the device failed. Device-specific failure codes can be encoded
in the non-zero value.

CardBus CIS Pointer

This optional register is used by those devices that want to share silicon between
CardBus and PCI. The field is used to point to the Card Information Structure (CIS) for
the CardBus card.

For a detailed explanation of the CIS, refer to the PCMCIA v2.10 specification. The
subject is covered under the heading Card Metaformat and describes the types of
information provided and the organization of this information.

Interrupt Line

The Interrupt Line register is an eight-bit register used to communicate interrupt line
routing information. The register is read/write and must be implemented by any device
(or device function) that uses an interrupt pin. POST software will write the routing
information into this register as it initializes and configures the system.

The value in this register tells which input of the system interrupt controller(s) the
device's interrupt pin is connected to. The device itself does not use this value, rather it
is used by device drivers and operating systems. Device drivers and operating systems

Revision 2.3

204

can use this information to determine priority and vector information. Values in this
register are system architecture specific.43

Interrupt Pin

The Interrupt Pin register tells which interrupt pin the device (or device function) uses.
A value of 1 corresponds to INTA#. A value of 2 corresponds to INTB#. A value of 3
corresponds to INTC#. A value of 4 corresponds to INTD#. Devices (or device
functions) that do not use an interrupt pin must put a 0 in this register. The values 05h
through FFh are reserved. This register is read-only. Refer to Section 2.2.6. for further
description of the usage of the INTx# pins.

MIN_GNT and MAX_LAT

These read-only byte registers are used to specify the device’s desired settings for
Latency Timer values. For both registers, the value specifies a period of time in units of
¼ microsecond. Values of 0 indicate that the device has no major requirements for the
settings of Latency Timers.

MIN_GNT is used for specifying how long a burst period the device needs assuming a
clock rate of 33 MHz. MAX_LAT is used for specifying how often the device needs to
gain access to the PCI bus.

Devices should specify values that will allow them to most effectively use the PCI bus as
well as their internal resources. Values should be chosen assuming that the target does
not insert any wait-states.

Implementation Example: Choosing MIN_GNT and MAX_LAT

A fast Ethernet controller (100 Mbs) has a 64-byte buffer for each transfer direction.
Optimal usage of these internal resources is achieved when the device treats each buffer
as two 32-byte ping-pong buffers. Each 32-byte buffer has eight DWORDS of data to be
transferred, resulting in eight data phases on the PCI bus. These eight data phases
translate to ¼ microsecond at 33 MHz, so the MIN_GNT value for this device is “1”.
When moving data, the device will need to empty or fill a 32-byte buffer every 3.2 µs
(assuming a throughput of 10 MB/s). This would correspond to a MAX_LAT value of
12.

Subsystem Vendor ID and Subsystem ID

These registers are used to uniquely identify the add-in card or subsystem where the PCI
device resides. They provide a mechanism for add-in card vendors to distinguish their
add-in cards from one another even though the add-in cards may have the same PCI
controller on them (and, therefore, the same Vendor ID and Device ID).

43 For x86 based PCs, the values in this register correspond to IRQ numbers (0-15) of the standard dual
8259 configuration. The value 255 is defined as meaning "unknown" or "no connection" to the interrupt
controller. Values between 15 and 254 are reserved.

Revision 2.3

205

Implementation of these registers is required for all PCI devices except those that have a
base class 6 with sub class 0-4 (0, 1, 2, 3, 4), or a base class 8 with sub class 0-3 (0, 1, 2,
3). Subsystem Vendor IDs can be obtained from the PCI SIG and are used to identify
the vendor of the add-in card or subsystem.44 Values for the Subsystem ID are vendor
specific.

Values in these registers must be loaded and valid prior to the system BIOS or any
system software accessing the PCI Configuration Space. How these values are loaded is
not specified but could be done during the manufacturing process or loaded from
external logic (e.g., strapping options, serial ROMs, etc.). These values must not be
loaded using expansion ROM software because expansion ROM software is not
guaranteed to be run during POST in all systems. Devices are responsible for
guaranteeing the data is valid before allowing reads to these registers to complete. This
can be done by responding to any accesses with Retry until the data is valid.

If a device is designed to be used exclusively on the system board, the system vendor
may use system specific software to initialize these registers after each power-on.

Capabilities Pointer

This optional register is used to point to a linked list of new capabilities implemented by
this device. This register is only valid if the “Capabilities List” bit in the Status Register
is set. If implemented, the bottom two bits are reserved and should be set to 00b.
Software should mask these bits off before using this register as a pointer in
Configuration Space to the first entry of a linked list of new capabilities. Refer to
Section 6.7. for a description of this data structure.

6.2.5. Base Addresses

One of the most important functions for enabling superior configurability and ease of use
is the ability to relocate PCI devices in the address spaces. At system power-up, device
independent software must be able to determine what devices are present, build a
consistent address map, and determine if a device has an expansion ROM. Each of these
areas is covered in the following sections.

6.2.5.1. Address Maps

Power-up software needs to build a consistent address map before booting the machine
to an operating system. This means it has to determine how much memory is in the
system, and how much address space the I/O controllers in the system require. After
determining this information, power-up software can map the I/O controllers into
reasonable locations and proceed with system boot. In order to do this mapping in a
device independent manner, the base registers for this mapping are placed in the
predefined header portion of Configuration Space.

44 A company requires only one Vendor ID. That value can be used in either the Vendor ID field of
configuration space (offset 00h) or the Subsystem Vendor ID field of configuration space (offset 2Ch). It
is used in the Vendor ID field (offset 00h) if the company built the silicon. It is used in the Subsystem
Vendor ID field (offset 2Ch) if the company built the add-in card. If a company builds both the silicon and
the add-in card, then the same value would be used in both fields.

Revision 2.3

206

Bit 0 in all Base Address registers is read-only and used to determine whether the
register maps into Memory or I/O Space. Base Address registers that map to Memory
Space must return a 0 in bit 0 (see Figure 6-5). Base Address registers that map to I/O
Space must return a 1 in bit 0 (see Figure 6-6).

Figure 6-5: Base Address Register for Memory

031

Base Address 10

IO spac e in d ica to r
R eserved

12

Figure 6-6: Base Address Register for I/O

Base Address registers that map into I/O Space are always 32 bits wide with bit 0
hardwired to a 1. Bit 1 is reserved and must return 0 on reads and the other bits are used
to map the device into I/O Space.

Base Address registers that map into Memory Space can be 32 bits or 64 bits wide (to
support mapping into a 64-bit address space) with bit 0 hardwired to a 0. For Memory
Base Address registers, bits 2 and 1 have an encoded meaning as shown in Table 6-4.
Bit 3 should be set to 1 if the data is prefetchable and reset to 0 otherwise. A device can
mark a range as prefetchable if there are no side effects on reads, the device returns all
bytes on reads regardless of the byte enables, and host bridges can merge processor
writes (refer to Section 3.2.3.) into this range45 without causing errors. Bits 0-3 are read-
only.

45 Any device that has a range that behaves like normal memory should mark the range as prefetchable. A
linear frame buffer in a graphics device is an example of a range that should be marked prefetchable.

Revision 2.3

207

Table 6-4: Memory Base Address Register Bits 2/1 Encoding

Bits 2/1 Meaning

00 Base register is 32 bits wide and mapping can be
done anywhere in the 32-bit Memory Space.

01 Reserved46

10 Base register is 64 bits wide and can be mapped
anywhere in the 64-bit address space.

11 Reserved

The number of upper bits that a device actually implements depends on how much of the
address space the device will respond to. A 32-bit register can be implemented to
support a single memory size that is a power of 2 from 16 bytes to 2 GB. A device that
wants a 1 MB memory address space (using a 32-bit base address register) would build
the top 12 bits of the address register, hardwiring the other bits to 0.

Power-up software can determine how much address space the device requires by
writing a value of all 1's to the register and then reading the value back. The device will
return 0's in all don't-care address bits, effectively specifying the address space required.
Unimplemented Base Address registers are hardwired to zero.

This design implies that all address spaces used are a power of two in size and are
naturally aligned. Devices are free to consume more address space than required, but
decoding down to a 4 KB space for memory is suggested for devices that need less than
that amount. For instance, a device that has 64 bytes of registers to be mapped into
Memory Space may consume up to 4 KB of address space in order to minimize the
number of bits in the address decoder. Devices that do consume more address space
than they use are not required to respond to the unused portion of that address space.
Devices that map control functions into I/O Space must not consume more than 256
bytes per I/O Base Address register. The upper 16 bits of the I/O Base Address register
may be hardwired to zero for devices intended for 16-bit I/O systems, such as PC
compatibles. However, a full 32-bit decode of I/O addresses must still be done.

46 The encoding to support memory space below 1 MB was supported in previous versions of this
specification. System software should recognize this encoding and handle appropriately.

Revision 2.3

208

Implementation Note: Sizing a 32-bit Base Address Register
Example

Decode (I/O or memory) of a register is disabled via the command register before sizing
a Base Address register. Software saves the original value of the Base Address register,
writes 0FFFFFFFFh to the register, then reads it back. Size calculation can be done from
the 32-bit value read by first clearing encoding information bits (bit 0 for I/O, bits 0-3
for memory), inverting all 32 bits (logical NOT), then incrementing by 1. The resultant
32-bit value is the memory/I/O range size decoded by the register. Note that the upper
16 bits of the result is ignored if the Base Address register is for I/O and bits 16-31
returned zero upon read. The original value in the Base Address register is restored
before re-enabling decode in the command register of the device.

64-bit (memory) Base Address registers can be handled the same, except that the second
32-bit register is considered an extension of the first; i.e., bits 32-63. Software writes
0FFFFFFFFh to both registers, reads them back, and combines the result into a 64-bit
value. Size calculation is done on the 64-bit value.

A type 00h predefined header has six DWORD locations allocated for Base Address
registers starting at offset 10h in Configuration Space. A device may use any of the
locations to implement Base Address registers. An implemented 64-bit Base Address
register consumes two consecutive DWORD locations. Software looking for
implemented Base Address registers must start at offset 10h and continue upwards
through offset 24h. A typical device will require one memory range for its control
functions. Some graphics devices may use two ranges, one for control functions and
another for a frame buffer. A device that wants to map control functions into both
memory and I/O Spaces at the same time must implement two Base Address registers
(one memory and one I/O). The driver for that device might only use one space in which
case the other space will be unused. Devices are recommended always to map control
functions into Memory Space.

6.2.5.2. Expansion ROM Base Address Register

Some PCI devices, especially those that are intended for use on add-in cards in PC
architectures, require local EPROMs for expansion ROM (refer to Section 6.3. for a
definition of ROM contents). The four-byte register at offset 30h in a type 00h
predefined header is defined to handle the base address and size information for this
expansion ROM. Figure 6-7 shows how this word is organized. The register functions
exactly like a 32-bit Base Address register except that the encoding (and usage) of the
bottom bits is different. The upper 21 bits correspond to the upper 21 bits of the
Expansion ROM base address. The number of bits (out of these 21) that a device
actually implements depends on how much address space the device requires. For
instance, a device that requires a 64 KB area to map its expansion ROM would
implement the top 16 bits in the register, leaving the bottom 5 (out of these 21)
hardwired to 0. Devices that support an expansion ROM must implement this register.

Device independent configuration software can determine how much address space the
device requires by writing a value of all 1's to the address portion of the register and then
reading the value back. The device will return 0's in all don't-care bits, effectively
specifying the size and alignment requirements. The amount of address space a device
requests must not be greater than 16 MB.

Revision 2.3

209

031
Expansion ROM Base Address

Reserved

11011

(Upper 21 bits)

 Expansion ROM Enable

Figure 6-7: Expansion ROM Base Address Register Layout

Bit 0 in the register is used to control whether or not the device accepts accesses to its
expansion ROM. When this bit is 0, the device’s expansion ROM address space is
disabled. When the bit is 1, address decoding is enabled using the parameters in the
other part of the base register. This allows a device to be used with or without an
expansion ROM depending on system configuration. The Memory Space bit in the
Command register has precedence over the Expansion ROM enable bit. A device must
respond to accesses to its expansion ROM only if both the Memory Space bit and the
Expansion ROM Base Address Enable bit are set to 1. This bit's state after RST# is 0.

In order to minimize the number of address decoders needed, a device may share a
decoder between the Expansion ROM Base Address register and other Base Address
registers.47 When expansion ROM decode is enabled, the decoder is used for accesses to
the expansion ROM and device independent software must not access the device through
any other Base Address registers.

6.3. PCI Expansion ROMs
The PCI specification provides a mechanism where devices can provide expansion ROM
code that can be executed for device-specific initialization and, possibly, a system boot
function (refer to Section 6.2.5.2.). The mechanism allows the ROM to contain several
different images to accommodate different machine and processor architectures. This
section specifies the required information and layout of code images in the expansion
ROM. Note that PCI devices that support an expansion ROM must allow that ROM to
be accessed with any combination of byte enables. This specifically means that
DWORD accesses to the expansion ROM must be supported.

The information in the ROMs is laid out to be compatible with existing Intel x86
Expansion ROM headers for ISA add-in cards, but it will also support other machine
architectures. The information available in the header has been extended so that more
optimum use can be made of the function provided by the add-in cards and so that the
minimum amount of Memory Space is used by the runtime portion of the expansion
ROM code.

47Note that it is the address decoder that is shared, not the registers themselves. The Expansion ROM Base
Address register and other Base Address registers must be able to hold unique values at the same time.

Revision 2.3

210

The PCI Expansion ROM header information supports the following functions:

• A length code is provided to identify the total contiguous address space needed by
the PCI device ROM image at initialization.

• An indicator identifies the type of executable or interpretive code that exists in the
ROM address space in each ROM image.

• A revision level for the code and data on the ROM is provided.

• The Vendor ID and Device ID of the supported PCI device are included in the ROM.

PCI expansion ROM code is never executed in place. It is always copied from the ROM
device to RAM and executed from RAM. This enables dynamic sizing of the code (for
initialization and runtime) and provides speed improvements when executing runtime
code.

6.3.1. PCI Expansion ROM Contents

PCI device expansion ROMs may contain code (executable or interpretive) for multiple
processor architectures. This may be implemented in a single physical ROM which can
contain as many code images as desired for different system and processor architectures
(see Figure 6-8). Each image must start on a 512-byte boundary and must contain the
PCI expansion ROM header. The starting point of each image depends on the size of
previous images. The last image in a ROM has a special encoding in the header to
identify it as the last image.

Image 0

Image 1

Image N

Figure 6-8: PCI Expansion ROM Structure

Revision 2.3

211

6.3.1.1. PCI Expansion ROM Header Format
The information required in each ROM image is split into two different areas. One area,
the ROM header, is required to be located at the beginning of the ROM image. The
second area, the PCI Data Structure, must be located in the first 64 KB of the image.
The format for the PCI Expansion ROM Header is given below. The offset is a
hexadecimal number from the beginning of the image and the length of each field is
given in bytes.

Extensions to the PCI Expansion ROM Header and/or the PCI Data Structure may be
defined by specific system architectures. Extensions for PC-AT compatible systems are
described in Section 6.3.3.

Offset Length Value Description
0h 1 55h ROM Signature, byte 1
1h 1 AAh ROM Signature, byte 2

2h-17h 16h xx Reserved (processor architecture unique data)
18h-19h 2 xx Pointer to PCI Data Structure

ROM Signature The ROM Signature is a two-byte field containing a 55h in
the first byte and AAh in the second byte. This signature
must be the first two bytes of the ROM address space for
each image of the ROM.

Pointer to PCI Data
Structure

The Pointer to the PCI Data Structure is a two-byte pointer in
little endian format that points to the PCI Data Structure. The
reference point for this pointer is the beginning of the ROM
image.

Revision 2.3

212

6.3.1.2. PCI Data Structure Format

The PCI Data Structure must be located within the first 64 KB of the ROM image and
must be DWORD aligned. The PCI Data Structure contains the following information:

Offset Length Description
0 4 Signature, the string "PCIR"
4 2 Vendor Identification
6 2 Device Identification
8 2 Reserved
A 2 PCI Data Structure Length
C 1 PCI Data Structure Revision
D 3 Class Code
10 2 Image Length
12 2 Revision Level of Code/Data
14 1 Code Type
15 1 Indicator
16 2 Reserved

Signature These four bytes provide a unique signature for the PCI Data
Structure. The string "PCIR" is the signature with "P" being
at offset 0, "C" at offset 1, etc.

Vendor Identification The Vendor Identification field is a 16-bit field with the same
definition as the Vendor Identification field in the
Configuration Space for this device.

Device Identification The Device Identification field is a 16-bit field with the same
definition as the Device Identification field in the
Configuration Space for this device.

Resvd Reserved 16-bit field.

Note that in earlier versions of the PCI Local Bus
Specification this field pointed to ROM located Vital Product
Data. This has been superseded by Vital Product Data as
described in Section 6.4.

PCI Data Structure
Length

The PCI Data Structure Length is a 16-bit field that defines
the length of the data structure from the start of the data
structure (the first byte of the Signature field). This field is in
little-endian format and is in units of bytes.

PCI Data Structure
Revision

The PCI Data Structure Revision field is an eight-bit field that
identifies the data structure revision level. This revision level
is 0.

Class Code The Class Code field is a 24-bit field with the same fields and
definition as the class code field in the Configuration Space
for this device.

Image Length The Image Length field is a two-byte field that represents the
length of the image. This field is in little-endian format, and
the value is in units of 512 bytes.

Revision 2.3

213

Revision Level The Revision Level field is a two-byte field that contains the
revision level of the code in the ROM image.

Code Type The Code Type field is a one-byte field that identifies the
type of code contained in this section of the ROM. The code
may be executable binary for a specific processor and system
architecture or interpretive code. The following code types
are assigned:

Type Description

0 Intel x86, PC-AT compatible
1 Open Firmware standard for PCI48

2 Hewlett-Packard PA RISC
3 Extensible Firmware Interface (EFI)
4-FF Reserved

Indicator Bit 7 in this field tells whether or not this is the last image in
the ROM. A value of 1 indicates "last image;" a value of 0
indicates that another image follows. Bits 0-6 are reserved.

6.3.2. Power-on Self Test (POST) Code

For the most part, system POST code treats add-in card PCI devices identically to those
that are soldered on to the system board. The one exception is the handling of expansion
ROMs. POST code detects the presence of an option ROM in two steps. First, the code
determines if the device has implemented an Expansion ROM Base Address register in
Configuration Space. If the register is implemented, the POST must map and enable the
ROM in an unused portion of the address space and check the first two bytes for the
AA55h signature. If that signature is found, there is a ROM present; otherwise, no ROM
is attached to the device.

If a ROM is attached, the POST must search the ROM for an image that has the proper
code type and whose Vendor ID and Device ID fields match the corresponding fields in
the device.

After finding the proper image, the POST copies the appropriate amount of data into
RAM. Then the device's initialization code is executed. Determining the appropriate
amount of data to copy and how to execute the device's initialization code will depend
on the code type for the field.

48 Open Firmware is a processor architecture and system architecture independent standard for dealing
with device specific option ROM code. Documentation for Open Firmware is available in the IEEE 1275-
1994 Standard for Boot (Initialization, Configuration) Firmware Core Requirements and Practices. A
related document, PCI Bus Binding to IEEE 1275-1994, specifies the application of Open Firmware to the
PCI local bus, including PCI-specific requirements and practices. This document may be obtained using
anonymous FTP to the machine playground.sun.com with the filename
/pub/p1275/bindings/postscript/PCI.ps.

Revision 2.3

214

6.3.3. PC-compatible Expansion ROMs

This section describes further requirements on ROM images and the handling of ROM
images that are used in PC-compatible systems. This applies to any image that specifies
Intel x86, PC-AT compatible in the Code Type field of the PCI Data Structure, and any
platform that is PC-compatible.

6.3.3.1. ROM Header Extensions

The standard header for PCI Expansion ROM images is expanded slightly for PC-
compatibility. Two fields are added, one at offset 02h provides the initialization size for
the image. Offset 03h is the entry point for the expansion ROM INIT function.

Offset Length Value Description
0h 1 55h ROM Signature byte 1
1h 1 AAh ROM Signature byte 2
2h 1 xx Initialization Size - size of the code in units of

512 bytes
3h 3 xx Entry point for INIT function. POST does a

FAR CALL to this location.
6h-17h 12h xx Reserved (application unique data)
18h-19h 2 xx Pointer to PCI Data Structure

6.3.3.1.1. POST Code Extensions

POST code in these systems copies the number of bytes specified by the Initialization
Size field into RAM, and then calls the INIT function whose entry point is at offset 03h.
POST code is required to leave the RAM area where the expansion ROM code was
copied to as writable until after the INIT function has returned. This allows the INIT
code to store some static data in the RAM area and to adjust the runtime size of the code
so that it consumes less space while the system is running.

The PC-compatible specific set of steps for the system POST code when handling each
expansion ROM are:

1. Map and enable the expansion ROM to an unoccupied area of the memory address
space.

2. Find the proper image in the ROM and copy it from ROM into the compatibility area
of RAM (typically 0C0000h to 0DFFFFhh) using the number of bytes specified by
Initialization Size.

3. Disable the Expansion ROM Base Address register.

4. Leave the RAM area writable and call the INIT function.

5. Use the byte at offset 02h (which may have been modified) to determine how much
memory is used at runtime.

Before system boot, the POST code must make the RAM area containing expansion
ROM code read-only.

Revision 2.3

215

POST code must handle VGA devices with expansion ROMs in a special way. The
VGA device's expansion BIOS must be copied to 0C0000h. VGA devices can be
identified by examining the Class Code field in the device's Configuration Space.

6.3.3.1.2. INIT Function Extensions

PC-compatible expansion ROMs contain an INIT function that is responsible for
initializing the I/O device and preparing for runtime operation. INIT functions in PCI
expansion ROMs are allowed some extended capabilities because the RAM area where
the code is located is left writable while the INIT function executes.

The INIT function can store static parameters inside its RAM area during the INIT
function. This data can then be used by the runtime BIOS or device drivers. This area
of RAM will not be writable during runtime.

The INIT function can also adjust the amount of RAM that it consumes during runtime.
This is done by modifying the size byte at offset 02h in the image. This helps conserve
the limited memory resource in the expansion ROM area (0C0000h - 0DFFFFh).

For example, a device expansion ROM may require 24 KB for its initialization and
runtime code, but only 8 KB for the runtime code. The image in the ROM will show a
size of 24 KB, so that the POST code copies the whole thing into RAM. Then when the
INIT function is running, it can adjust the size byte down to 8 KB. When the INIT
function returns, the POST code sees that the runtime size is 8 KB and can copy the next
expansion BIOS to the optimum location.

The INIT function is responsible for guaranteeing that the checksum across the size of
the image is correct. If the INIT function modifies the RAM area in any way, a new
checksum must be calculated and stored in the image. The INIT function should not
modify system memory (except for the INIT function RAM area) in any way, unless it
uses appropriate protocol or BIOS services to allocate memory. It is not uncommon for
POST software to use system memory for critical data or code, and its destruction or
modification may prevent system boot.

If the INIT function wants to completely remove itself from the expansion ROM area, it
does so by writing a zero to the Initialization Size field (the byte at offset 02h). In this
case, no checksum has to be generated (since there is no length to checksum across).

On entry, the INIT function is passed three parameters: the bus number, device number,
and function number of the device that supplied the expansion ROM. These parameters
can be used to access the device being initialized. They are passed in x86 registers,
[AH] contains the bus number, the upper five bits of [AL] contain the device number,
and the lower three bits of [AL] contain the function number.

Prior to calling the INIT function, the POST code will allocate resources to the device
(via the Base Address and Interrupt Line registers).

6.3.3.1.3. Image Structure

A PC-compatible image has three lengths associated with it: a runtime length, an
initialization length, and an image length. The image length is the total length of the
image, and it must be greater than or equal to the initialization length.

The initialization length specifies the amount of the image that contains both the
initialization and runtime code. This is the amount of data that POST code will copy

Revision 2.3

216

into RAM before executing the initialization routine. Initialization length must be
greater than or equal to runtime length. The initialization data that is copied into RAM
must checksum to 0 (using the standard algorithm).

The runtime length specifies the amount of the image that contains the runtime code.
This is the amount of data the POST code will leave in RAM while the system is
operating. Again, this amount of the image must checksum to 0.

The PCI Data structure must be contained within the runtime portion of the image (if
there is any), otherwise, it must be contained within the initialization portion. Figure 6-9
shows the typical layout of an image in the expansion ROM.

Header

PCI Data structure
Runtime size

Initialization size

Checksum byte

Checksum byte

Image size

Figure 6-9: Typical Image Layout

6.4. Vital Product Data
Vital Product Data (VPD) is the information that uniquely defines items such as the
hardware, software, and microcode elements of a system. The VPD provides the system
with information on various FRUs (Field Replaceable Unit) including Part Number,
Serial Number, and other detailed information. VPD also provides a mechanism for
storing information such as performance and failure data on the device being monitored.
The objective, from a system point of view, is to collect this information by reading it
from the hardware, software, and microcode components.

Support of VPD within add-in cards is optional depending on the manufacturer. The
definition of PCI VPD presents no impact to existing PCI devices and minimal impact to
future PCI devices which optionally include VPD. Though support of VPD is optional,
add-in card manufacturers are encouraged to provide VPD due to its inherent benefits for
the add-in card, system manufacturers, and for Plug and Play.

The mechanism for accessing VPD and the description of VPD data structures is
documented in Appendix I.

Revision 2.3

217

6.5. Device Drivers
There are two characteristics of PCI devices that may make PCI device drivers different
from "standard" or existing device drivers. The first characteristic is that PCI devices
are relocatable (i.e., not hardwired) in the address spaces. PCI device drivers (and other
configuration software) should use the mapping information stored in the device's
Configuration Space registers to determine where the device was mapped. This also
applies to determining interrupt line usage.

The second characteristic is that PCI interrupts are shareable. PCI device drivers are
required to support shared interrupts, since it is very likely that system implementations
will connect more than one device to a single interrupt line. The exact method for
interrupt sharing is operating system specific and is not elaborated here.

Some systems may not guarantee that data is delivered to main memory before interrupts
are delivered to the CPU. If not handled properly, this can lead to data consistency
problems (loss of data). This situation is most often associated with the implementation
of posting buffers in bridges between the PCI bus and other buses.

There are three ways that data and interrupt consistency can be guaranteed:

1. The system hardware can guarantee that posting buffers are flushed before interrupts
are delivered to the processor.

2. The device signaling the interrupt can perform a read of the just-written data before
signaling the interrupt. This causes posting buffers to be flushed.

3. The device driver can perform a read to any register in the device before accessing
the data written by the device. This read causes posting buffers to be flushed.

Device drivers are ultimately responsible for guaranteeing consistency of interrupts and
data by assuring that at least one of the three methods described above is performed in
the system. This means a device driver must do Method 3 unless it implicitly knows
Method 2 is done by its device, or it is informed (by some means outside the scope of
this specification) that Method 1 is done by the system hardware.

6.6. System Reset
After system reset, the processor(s) must be able to access boot code and any devices
necessary to boot the machine. Depending on the system architecture, bridges may need
to come up enabled to pass these accesses through to the remote bus.

Similarly, devices on PCI may need to come up enabled to recognize fixed addresses to
support the boot sequence in a system architecture. Such devices are required to support
the Command register disabling function described in Section 6.2.2. They should also
provide a mechanism (invoked through the Configuration Space) to re-enable the
recognition of fixed addresses.

Revision 2.3

218

6.7. Capabilities List
Certain capabilities added to PCI after the publication of revision 2.1 are supported by
adding a set of registers to a linked list called the Capabilities List. This optional data
structure is indicated in the PCI Status Register by setting the Capabilities List bit (bit 4)
to indicate that the Capabilities Pointer is located at offset 34h. This register points to
the first item in the list of capabilities.

Each capability in the list consists of an 8-bit ID field assigned by the PCI SIG, an 8 bit
pointer in configuration space to the next capability, and some number of additional
registers immediately following the pointer to implement that capability. Each
capability must be DWORD aligned. The bottom two bits of all pointers (including the
initial pointer at 34h) are reserved and must be implemented as 00b although software
must mask them to allow for future uses of these bits. A pointer value of 00h is used to
indicate the last capability in the list. Figure 6-10 shows how this list is constructed.

Figure 6-10: Example Capabilities List

Each defined capability must have a SIG assigned ID code. These codes are assigned and
handled much like the Class Codes. Refer to Appendix H for a list of currently defined
Capabilities. Each Capability must define the detailed register map for that capability.
These registers must immediately follow the pointer to the next capability.

6.8. Message Signaled Interrupts
Message Signaled Interrupts (MSI) is an optional feature that enables a device to request
service by writing a system-specified message to a system-specified address (PCI
DWORD memory write transaction). The transaction address specifies the message
destination and the transaction data specifies the message. System software initializes
the message destination and message during device configuration, allocating one or more
non-shared messages to each MSI capable function.

Since the target of the transaction cannot distinguish between an MSI write transaction
and any other write transaction, all transaction termination conditions are supported.
Therefore, a MSI write transaction can be terminated with a Retry, Master-Abort,
Target-Abort, or normal completion (refer to Section 3.3.3.2.).

Revision 2.3

219

It is recommended that devices implement interrupt pins to provide compatibility in
systems that do not support MSI (devices default to interrupt pins). However, it is
expected that the need for interrupt pins will diminish over time. Devices that do not
support interrupt pins due to pin constraints (rely on polling for device service) may
implement messages to increase performance without adding additional pins. Therefore,
system configuration software must not assume that a message capable device has an
interrupt pin.

Interrupt latency (the time from interrupt signaling to interrupt servicing) is system
dependent. Consistent with current interrupt architectures, message signaled interrupts
do not provide interrupt latency time guarantees.

6.8.1. Message Capability Structure

The capabilities mechanism (refer to Section 6.7.) is used to identify and configure a
MSI capable device. The message capability structure is illustrated in Figure 6-11. Each
device function that supports MSI (in a multi-function device) must implement its own
MSI capability structure. More then one MSI capability structure per function is
prohibited.

Capability Pointer

Capability Pointer + 04h

Capability Pointer + 08h

 31 16 15 8 7 0

 Message Control Next Pointer Capability ID

Message Address

Message Data

Capability Pointer

Capability Pointer + 04h

Capability Pointer + 08h

Capability Pointer + 0Ch

 31 16 15 8 7 0

 Message Control Next Pointer Capability ID

Message Address

Message Data

Message Upper Address

Capability Structure for 32-bit Message Address

Capability Structure for 64-bit Message Address

Figure 6-11: Message Signaled Interrupt Capability Structure

To request service, an MSI function writes the contents of the Message Data register to
the address specified by the contents of the Message Address register (and, optionally,
the Message Upper Address register for a 64-bit message address). A read of the address
specified by the contents of the Message Address register produces undefined results.

The capability structure for a 32-bit message address (illustrated in Figure 6-11) is
implemented if the function supports a 32-bit message address. The capability structure
for a 64-bit message address (illustrated in Figure 6-11) is implemented if the function
supports a 64-bit message address. If a device supports MSI and the device supports
64-bit addressing (DAC) when acting as a master, the device is required to implement
the 64-bit message address structure.

The message control register indicates the function’s capabilities and provides system
software control over MSI.

Revision 2.3

220

Each field is further described in the following sub-sections. Reserved registers and bits
always return 0 when read and write operations have no effect. Read-only registers
return valid data when read and write operations have no effect.

6.8.1.1. Capability ID

7::0 CAP_ID The value of 05h in this field identifies the function as
message signaled interrupt capable. This field is
read only.

6.8.1.2. Next Pointer

7::0 NXT_PTR Pointer to the next item in the capabilities list. Must
be NULL for the final item in the list. This field is read
only.

6.8.1.3. Message Control

This register provides system software control over MSI. After reset, MSI is disabled
(bit 0 is cleared) and the function requests servicing via its INTx# pin (if supported).
System software can enable MSI by setting bit 0 of this register. System software is
permitted to modify the Message Control register’s read/write bits and fields. A device
driver is not permitted to modify the Message Control register’s read/write bits and
fields.

Bits Field Description

15::08 Reserved
Always returns 0 on a read and a write operation has
no effect.

7 64 bit address
capable

If 1, the function is capable of generating a 64-bit
message address.

If 0, the function is not capable of generating a 64-bit
message address.

This bit is read only.

Revision 2.3

221

Bits Field Description

6::4 Multiple Message
Enable

System software writes to this field to indicate the
number of allocated messages (equal to or less than
the number of requested messages). The number of
allocated messages is aligned to a power of two. If a
function requests four messages (indicated by a
Multiple Message Capable encoding of “010”),
system software can allocate either four, two, or one
message by writing a “010”, “001, or “000” to this
field, respectively. When MSI is enabled, a device
will be allocated at least 1 message. The encoding is
defined as:

Encoding # of messages allocated

000 1

001 2

010 4

011 8

100 16

101 32

110 Reserved

111 Reserved

This field’s state after reset is “000”.

This field is read/write.

3::1 Multiple Message
Capable

System software reads this field to determine the
number of requested messages. The number of
requested messages must be aligned to a power of
two (if a function requires three messages, it requests
four by initializing this field to “010”). The encoding is
defined as:

Encoding # of messages requested

000 1

001 2

010 4

011 8

100 16

101 32

110 Reserved

111 Reserved

This field is read/only.

Revision 2.3

222

Bits Field Description

0 MSI Enable
If 1, the function is permitted to use MSI to request
service and is prohibited from using its INTx# pin (if
implemented). System configuration software sets
this bit to enable MSI. A device driver is prohibited
from writing this bit to mask a function’s service
request. Refer to Section 6.2.2.2. for control of
INTx#.

If 0, the function is prohibited from using MSI to
request service.

This bit’s state after reset is 0 (MSI is disabled).

This bit is read/write.

6.8.1.4. Message Address

Bits Field Description

31::02 Message
Address

System-specified message address.

If the Message Enable bit (bit 0 of the Message
Control register) is set, the contents of this register
specify the DWORD aligned address (AD[31::02]) for
the MSI memory write transaction. AD[1::0] are
driven to zero during the address phase.

This field is read/write.

01::00 Reserved Always returns 0 on read. Write operations have no
effect.

6.8.1.5. Message Upper Address (Optional)

Bits Field Description

31::00 Message Upper
Address

System-specified message upper address.

This register is optional and is implemented only if the
device supports a 64-bit message address (bit 7 in
Message Control register set)49. If the Message
Enable bit (bit 0 of the Message Control register) is
set, the contents of this register (if non-zero) specify
the upper 32-bits of a 64-bit message address
(AD[63::32]). If the contents of this register are zero,
the device uses the 32 bit address specified by the
message address register.

This field is read/write.

49 This register is required when the device supports 64-bit addressing (DAC) when acting as a master.

Revision 2.3

223

6.8.1.6. Message Data

Bits Field Description

15::00 Message Data System-specified message.

Each MSI function is allocated up to 32 unique
messages.

System architecture specifies the number of unique
messages supported by the system.

If the Message Enable bit (bit 0 of the Message
Control register) is set, the message data is driven
onto the lower word (AD[15::00]) of the memory write
transaction’s data phase. AD[31::16] are driven to
zero during the memory write transaction’s data
phase. C/BE[3::0]# are asserted during the data
phase of the memory write transaction.

The Multiple Message Enable field (bits 6-4 of the
Message Control register) defines the number of low
order message data bits the function is permitted to
modify to generate its system software allocated
messages. For example, a Multiple Message Enable
encoding of “010” indicates the function has been
allocated four messages and is permitted to modify
message data bits 1 and 0 (a function modifies the
lower message data bits to generate the allocated
number of messages). If the Multiple Message
Enable field is “000”, the function is not permitted to
modify the message data.

This field is read/write.

6.8.2. MSI Operation

At configuration time, system software traverses the function’s capability list. If a
capability ID of 05h is found, the function implements MSI. System software reads the
MSI capability structure’s Message Control register to determine the function’s
capabilities.

System software reads the Multiple Message Capable field (bits 3-1 of the Message
Control register) to determine the number of requested messages. System software
writes to the Multiple Message Enable field (bits 6-4 of the Message Control register) to
allocate either all or a subset of the requested messages. For example, a function can
request four messages and be allocated either four, two, or one message. The number of
messages requested and allocated are aligned to a power of two (a function that requires
three messages must request four).

If the 64-bit Address Capable bit (bit 7 of the Message Control register) is set, system
software initializes the MSI capability structure’s Message Address register (specifying
the lower 32 bits of the message address) and the Message Upper Address register
(specifying the upper 32 bits of the message address) with a system-specified message
destination address. System software may program the Message Upper Address register
to zero so that the function generates a 32-bit address for the MSI write transaction. If

Revision 2.3

224

this bit is clear, system software initializes the MSI capability structure’s Message
Address register (specifying a 32-bit message address) with a system specified message
destination address.

System software initializes the MSI capability structure’s Message Data register with a
system specified message. Care must be taken to initialize only the Message Data
register (i.e., a 2-byte value) and not modify the upper two bytes of that DWORD
location.

To maintain backward compatibility, the MSI Enable bit (bit 0 of the Message Control
register) is cleared after reset (MSI is disabled). System configuration software sets this
bit to enable MSI. A device driver is prohibited from writing this bit to mask a
function’s service request. Once enabled, a function is prohibited from using its INTx#
pin (if implemented) to request service (MSI and INTx# are mutually exclusive).

Once MSI is enabled (bit 0 of the Message Control Register is set), the function may
send messages. To send a message, a function does a DWORD memory write to the
address specified by the contents of the Message Address register (and optionally the
Message Upper Address register for a 64-bit message address). The DWORD that is
written is made up of the value in the Message Data register in the lower two bytes and
zeroes in the upper two bytes. If the Multiple Message Enable field (bits 6-4 of the
Message Control register) is non-zero, the device is permitted to modify the low order
bits of the message data to generate multiple messages. For example, a Multiple
Message Enable encoding of “010” indicates the function is permitted to modify
message data bits 1 and 0 to generate up to four unique messages. If the Multiple
Message Enable field is “000”, the function is not permitted to modify the message data.
How a function uses multiple messages (when allocated) is device dependent. A
function must handle being allocated less messages than requested.

If a device signals the same message many times, only one message is guaranteed to be
serviced. If all messages must be serviced, a device driver handshake is required. In
other words, once a function signals Message A, it cannot signal Message A again until
it is explicitly enabled to do so by its device driver (provided all messages must be
serviced). If some messages can be lost, a device driver handshake is not required. For
functions that support multiple messages, a function can signal multiple unique
messages and is guaranteed that each unique message will be serviced. For example, a
device can signal Message A followed by Message B without any device driver
handshake (both Message A and Message B will be serviced).

An MSI is by definition a non-shared interrupt that enforces data consistency (ensures
the interrupt service routine accesses the most recent data). The system guarantees that
any data written by the device prior to sending the MSI has reached its final destination
before the interrupt service routine accesses that data. Therefore, a device driver is not
required to read its device before servicing its MSI.

Revision 2.3

225

6.8.2.1. MSI Transaction Termination

The target of an MSI transaction cannot distinguish between it and any other memory
write transaction. The termination requirements for an MSI transaction are the same as
for any other memory write transaction except as noted below.

If the MSI write transaction is terminated with a Master-Abort or a Target-Abort, the
master that originated the MSI memory write transaction is required to report the error
by asserting SERR# (if bit 8 in the Command register is set) and to set the appropriate
bits in the Status register (refer to Section 3.7.4.2.). An MSI memorywrite transaction is
ignored by the target if it is terminated with a Master-Abort or Target-Abort.

Refer to the PCI-to-PCI Bridge Architecture Specification, Revision 1.1 (Section 6, Error
Support) for PCI-to-PCI bridge SERR# generation in response to error conditions from
posted memory writes on the destination bus.

Note that SERR# generation in an MSI-enabled environment containing PCI-to-PCI
bridges requires the SERR# reporting enable bits in all devices in the MSI message path
to be set. For PCI-to-PCI bridges specifically, refer to Section 6.2.2 and PCI-to-PCI
Bridge Architecture Specification, Revision 1.1, Sections 3.2.4.3 and 3.2.5.17.).

If the MSI write transaction results in a data parity error, the master that originated the
MSI write transaction is required to assert SERR# (if bit 8 in the Command register is
set) and to set the appropriated bits in the Status register (refer to Section 3.7.4.).

6.8.2.2. MSI Transaction Reception and Ordering Requirements

As with all memory write transactions, the device that includes the target of the interrupt
message (the interrupt receiver) is required to complete all interrupt message
transactions as a target without requiring other transactions to complete first as a master.
(Refer to Section 3.3.3.3.4. In general, this means that the message receiver must
complete the interrupt message transaction independent of when the CPU services the
interrupt. For example, each time the interrupt receiver receives an interrupt message, it
could set a bit in an internal register indicating that this message had been received and
then complete the transaction on the bus. The appropriate interrupt service routine
would later be dispatched because this bit was set. The message receiver would not be
allowed to delay the completion of the interrupt message on the bus pending
acknowledgement from the processor that the interrupt was being serviced. Such
dependencies can lead to deadlock when multiple devices generate interrupt messages
simultaneously.

Although interrupt messages remain strictly ordered throughout the PCI bus hierarchy,
the order of receipt of the interrupt messages does not guarantee any order in which the
interrupts will be serviced. Since the message receiver must complete all interrupt
message transactions without regard to when the interrupt was actually serviced, the
message receiver will generally not maintain any information about the order in which
the interrupts were received. This is true both of interrupt messages received from
different devices, and multiple messages received from the same device. If a device
requires one interrupt message to be serviced before another, then the device must not
send the second interrupt message until the first one has been serviced.

Revision 2.3

226

Revision 2.3

227

Chapter 7
66 MHz PCI Specification

7.1. Introduction
The 66 MHz PCI bus is a compatible superset of PCI defined to operate up to a
maximum clock speed of 66 MHz. The 66 MHz PCI bus is intended to be used by low
latency, high bandwidth bridges, and peripherals. Systems may augment the 66 MHz
PCI bus with a separate 33 MHz PCI bus to handle lower speed peripherals.

Differences between 33 MHz PCI and 66 MHz PCI are minimal. Both share the same
protocol, signal definitions, and connector layout. To identify 66 MHz PCI devices, one
static signal is added by redefining an existing ground pin, and one bit is added to the
Configuration Status register. Bus drivers for the 66 MHz PCI bus meet the same DC
characteristics and AC drive point limits as 33 MHz PCI bus drivers; however, 66 MHz
PCI requires faster timing parameters and redefined measurement conditions. As a
result, 66 MHz PCI buses may support smaller loading and trace lengths.

A 66 MHz PCI device operates as a 33 MHz PCI device when it is connected to a
33 MHz PCI bus. Similarly, if any 33 MHz PCI devices are connected to a 66 MHz PCI
bus, the 66 MHz PCI bus will operate as a 33 MHz PCI bus.

The programming models for 66 MHz PCI and 33 MHz PCI are the same, including
configuration headers and class types. Agents and bridges include a 66 MHz PCI status
bit.

7.2. Scope
This chapter defines aspects of 66 MHz PCI that differ from those defined elsewhere in
this document, including information on device and bridge support. This chapter will
not repeat information defined elsewhere.

Revision 2.3

228

7.3. Device Implementation Considerations

7.3.1. Configuration Space

Identification of a 66 MHz PCI-compliant device is accomplished through the use of the
read-only 66MHZ_CAPABLE flag located in bit 5 of the PCI Status register (see
Figure 6-3). If set, this bit signifies that the device is capable of operating in 66 MHz
mode.

7.4. Agent Architecture
A 66 MHz PCI agent is defined as a PCI agent capable of supporting 66 MHz PCI.

All 66 MHz PCI agents must support a read-only 66MHZ_CAPABLE flag located in
bit 5 of the PCI Status register for that agent. If set, the 66MHZ_CAPABLE bit signifies
that the agent can operate in 66 MHz PCI mode.50

7.5. Protocol

7.5.1. 66MHZ_ENABLE (M66EN) Pin Definition

Pin 49B on the PCI connector is designated M66EN. Add-in cards and bus segments not
capable of operation in 66 MHz mode must connect this pin to ground. A 66 MHz PCI
system board segment must provide a single pullup resistor to Vcc on the M66EN pin.

Refer to Section 7.7.7. for the appropriate pullup value. M66EN is bused to all 66 MHz
PCI connectors and system board-only 66 MHz PCI components that include the
M66EN pin. The 66 MHz PCI clock generation circuitry must connect to M66EN to
generate the appropriate clock for the segment (33 to 66 MHz if M66EN is asserted, 0 to
33 MHz if M66EN is deasserted).

If a 66 MHz PCI agent requires clock speed information (for example, for a PLL
bypass), it is permitted to use M66EN as an input. If a 66 MHz PCI agent can run
without any knowledge of the speed, it is permitted to leave M66EN disconnected.

50 Configuration software identifies agent capabilities by checking the 66MHZ_CAPABLE bit in the
Status register. This includes both the primary and secondary Status registers in a PCI-to-PCI bridge. This
allows configuration software to detect a 33 MHz PCI agent on a 66 MHz PCI bus or a 66 MHz PCI agent
on a 33 MHz PCI bus and issue a warning to the user describing the situation.

Revision 2.3

229

Table 7-1: Bus and Agent Combinations

Bus
66MHZ_CAPABLE51

Agent
66MHZ_CAPABLE Description

0 0 33 MHz PCI agent located on a
33 MHz PCI bus

0 1 66 MHz PCI agent located on a
33 MHz PCI bus52

1 0 33 MHz PCI agent located on a

66 MHz PCI bus52

1 1 66 MHz PCI agent located on a
66 MHz PCI bus

7.5.2. Latency

The 66 MHz PCI bus is intended for low latency devices. It is required that the target
initial latency not exceed 16 clocks.

7.6. Electrical Specification

7.6.1. Overview

This chapter defines the electrical characteristics and constraints of 66 MHz PCI
components, systems, and add-in cards, including connector pin assignments.

All electrical specifications from Chapter 4 of this document apply to 66 MHz PCI
except where explicitly superseded. Specifically:

• The 66 MHz PCI bus uses the 3.3V signaling environment.

• Timing parameters have been scaled to 66 MHz.

• AC test loading conditions have been changed.

51 The bus 66MHZ_CAPABLE status bit is located in a bridge’s Status registers.

52 This condition may cause the configuration software to generate a warning to the user stating that the
add-in card is installed in an inappropriate socket and should be relocated.

Revision 2.3

230

7.6.2. Transition Roadmap to 66 MHz PCI

The 66 MHz PCI bus utilizes the PCI bus protocol; 66 MHz PCI simply has a higher
maximum bus clock frequency. Both 66 MHz and 33 MHz devices can coexist on the
same bus segment. In this case, the bus segment will operate as a 33 MHz segment.

To ensure compatibility, 66 MHz PCI devices have the same DC specifications and AC
drive point limits as 33 MHz PCI devices. However, 66 MHz PCI requires modified
timing parameters as described in the analysis of the timing budget shown in Figure 7-1.

Tcyc ≥ Tval + Tprop + Tskew + Tsu

Tval =11 ns Tprop = 10 ns Tskew = 2ns Tsu=7ns

Tval Tprop Tskew Tsu
6 ns 5 ns 1 ns 3 ns

Tcyc = 30 ns

Tcyc = 15 ns

33 MHZ

66 MHZ

Figure 7-1: 33 MHz PCI vs. 66 MHz PCI Timing

Since AC drive requirements are the same for 66 MHz PCI and 33 MHz PCI, it is
expected that 66 MHz PCI devices will function on 33 MHz PCI buses. Therefore,
66 MHz PCI devices must meet both 66 MHz PCI and 33 MHz PCI requirements.

7.6.3. Signaling Environment

A 66 MHz PCI system board segment must use the PCI 3.3V keyed connector.
Therefore, 66 MHz PCI system board segments accept either 3.3V or Universal add-in
cards; 5V add-in cards are not supported.

While 33 MHz PCI bus drivers are defined by their V/I curves, 66 MHz PCI output
buffers are specified in terms of their AC and DC drive points, timing parameters, and
slew rate. The minimum AC drive point defines an acceptable first step voltage and
must be reached within the maximum Tval time. The maximum AC drive point limits

the amount of overshoot and undershoot in the system. The DC drive point specifies
steady state conditions. The minimum slew rate and the timing parameters guarantee
66 MHz operation. The maximum slew rate minimizes system noise. This method of
specification provides a more concise definition for the output buffer.

Revision 2.3

231

7.6.3.1. DC Specifications

Refer to Section 4.2.2.1.

7.6.3.2. AC Specifications

Table 7-2: AC Specifications

Symbol Parameter Condition Min Max Units Notes

AC Drive Points

Ioh(AC,min) Switching Current
High, minimum

Vout = 0.3Vcc -12Vcc - mA 1

Ioh(AC,max) Switching Current
High, maximum

Vout = 0.7Vcc - -32Vcc mA

Iol(AC,min) Switching Current
Low, minimum

Vout = 0.6Vcc 16Vcc - mA 1

Iol(AC,max) Switching
Current Low,
maximum

Vout = 0.18Vcc - 38Vcc mA

DC Drive Points

VOH Output high
voltage

Iout = -0.5 mA 0.9Vcc - V 2

VOL Output low
voltage

Iout = 1.5 mA - 0.1Vcc V 2

Slew Rate

tr Output rise slew
rate

0.3Vcc to 0.6Vcc 1 4 V/ns 3

tf Output fall slew
rate

0.6Vcc to 0.3Vcc 1 4 V/ns 3

Clamp Current

Ich High clamp
current

Vcc + 4 > Vin ≥ Vcc + 1 25 + (Vin - Vcc - 1) / 0.015 - mA

Icl Low clamp
current

-3 < Vin ≤ -1 -25 + (Vin + 1) / 0.015 - mA

NOTES:
1. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here; i.e., half

size drivers may be used on these signals. This specification does not apply to CLK and RST# which are system
outputs. "Switching Current High" specifications are not relevant to SERR#, PME#, INTA#, INTB#, INTC#, and
INTD# which are open drain outputs.

2. These DC values are duplicated from Section 4.2.2.1. and are included here for completeness.

3. This parameter is to be interpreted as the cumulative edge rate across the specified range rather than the
instantaneous rate at any point within the transition range. The specified load (see Figure 7-7) is optional. The
designer may elect to meet this parameter with an unloaded output . However, adherence to both maximum and
minimum parameters is required (the maximum is not simply a guideline). Rise slew rate does not apply to open
drain outputs.

Revision 2.3

232

7.6.3.3. Maximum AC Ratings and Device Protection

Refer to Section 4.2.2.3.

7.6.4. Timing Specification

7.6.4.1. Clock Specification

The clock waveform must be delivered to each 66 MHz PCI component in the system.
In the case of add-in cards, compliance with the clock specification is measured at the
add-in card component, not at the connector. Figure 7-2 shows the clock waveform and
required measurement points for 3.3V signaling environments. Refer to item 8 in
Section 3.10. for special considerations when using PCI-to-PCI bridges on add-in cards,
or when add-in card slots are located downstream of a PCI-to-PCI bridge. Table 7-3
summarizes the clock specifications.

T_high

T_low

0.3 Vcc

T_cyc

0.5 Vcc

3.3 volt Clock

0.4 Vcc

0.6 Vcc

0.2 Vcc

0.4 Vcc, p-to-p
(minimum)

Figure 7-2: 3.3V Clock Waveform

Spread spectrum modulation techniques are permitted within the limits specified in
Table 7-3.

Revision 2.3

233

Table 7-3: Clock Specifications

66 MHz 33 MHz4

Symbol Parameter Min Max Min Max Units Notes

Tcyc CLK Cycle Time 15 30 30 ∞ ns 1,3

Thigh CLK High Time 6 11 ns

Tlow CLK Low Time 6 11 ns

- CLK Slew Rate 1.5 4 1 4 V/ns 2

Spread Spectrum Requirements

fmod modulation
frequency

30 33 - - kHz

fspread frequency
spread

-1 0 %

NOTES:

1. In general, all 66 MHz PCI components must work with any clock frequency up to 66 MHz. CLK
requirements vary depending upon whether the clock frequency is above 33 MHz.

a. Device operational parameters at frequencies at or under 33 MHz will conform to the specifications in
Chapter 4. The clock frequency may be changed at any time during the operation of the system so
long as the clock edges remain "clean" (monotonic) and the minimum cycle and high and low times
are not violated. The clock may only be stopped in a low state. A variance on this specification is
allowed for components designed for use on the system board only. Refer to Section 4.2.3.1. for
more information.

b. For clock frequencies between 33 MHz and 66 MHz, the clock frequency may not change except
while RST# is asserted or when spread spectrum clocking (SSC) is used to reduce EMI emissions.

2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met
across the minimum peak-to-peak portion of the clock waveform as shown in Figure 7-2. Clock slew rate
is measured by the slew rate circuit shown in Figure 7-7.

3. The minimum clock period must not be violated for any single clock cycle; i.e., accounting for all system
jitter.

4. These values are duplicated from Section 4.2.3.1. and included here for comparison.

Implementation Note: Spread Spectrum Clocking (SSC)

Spreading the frequency is only allowed below the maximum clock frequency that is
specified (i.e., the minimum clock period shown in Table 7-3 cannot be violated). In
other words, the frequency change can only occur to reduce the frequency of the clock
and never to increase it. When PLLs are used to track CLK, they need to track the SSC
modulation quickly in order not to accumulate excessive phase difference between the
PLL input and output clocks (commonly referred to as SSC tracking skew). The amount
of tracking skew depends on the PLL bandwidth, phase angle at 30-33 kHz, and the
amount of the spread. It is desirable to maximize bandwidth and/or reduce the phase
angle in order to minimize the tracking skew; otherwise, the SSC frequency spread of the
system must be reduced, thereby, reducing the SSC EMI reduction capability.

Revision 2.3

234

7.6.4.2. Timing Parameters

Table 7-4: 66 MHz and 33 MHz Timing Parameters

66 MHz 33 MHz7

Symbol Parameter Min Max Min Max Units Notes

Tval CLK to Signal Valid Delay -
bused signals

2 6 2 11 ns 1, 2,
3, 8

Tval(ptp) CLK to Signal Valid Delay -
point to point signals

2 6 2 12 ns 1, 2,
3, 8

Ton Float to Active Delay 2 2 ns 1, 8, 9

Toff Active to Float Delay 14 28 ns 1, 9

Tsu Input Setup Time to CLK -
bused signals

3 7 ns 3, 4,
10

Tsu(ptp) Input Setup Time to CLK -
point to point signals

5 10,12 ns 3, 4

Th Input Hold Time from CLK 0 0 ns 4

Trst Reset Active Time after
power stable

1 1 ms 5

Trst-clk Reset Active Time after CLK
stable

100 100 µs 5

Trst-off Reset Active to output float
delay

40 40 ns 5, 6

trrsu REQ64# to RST# setup time 10Tcyc 10Tcyc ns

trrh RST# to REQ64# hold time 0 50 0 50 ns

Trhfa RST# high to first
Configuration access

225 225 clocks

Trhff RST# high to first FRAME#
assertion

5 5 clocks

NOTES:

1. See the timing measurement conditions in Figure 7-3. It is important that all driven signal transitions drive to their
Voh or Vol level within one Tcyc.

2. Minimum times are measured at the package pin with the load circuit shown in Figure 7-7. Maximum times are
measured with the load circuit shown in Figures 7-5 and 7-6.

3. REQ# and GNT# are point-to-point signals and have different input setup times than do bused signals. GNT#
and REQ# have a setup of 5 ns at 66 MHz. All other signals are bused.

4. See the timing measurement conditions in Figure 7-4.

5. If M66EN is asserted, CLK is stable when it meets the requirements in Section 7.6.4.1. RST# is asserted and
deasserted asynchronously with respect to CLK. Refer to Section 4.3.2. for more information.

6. All output drivers must be floated when RST# is active. Refer to Section 4.3.2. for more information.

7. These values are duplicated from Section 4.2.3.2. and are included here for comparison.

Revision 2.3

235

8. When M66EN is asserted, the minimum specification for Tval(min), Tval(ptp)(min), and Ton may be reduced to

1 ns if a mechanism is provided to guarantee a minimum value of 2 ns when M66EN is deasserted.

9. For purposes of Active/Float timing measurements, the Hi-Z or “off” state is defined to be when the total current
delivered through the component pin is less than or equal to the leakage current specification.

10. Setup time applies only when the device is not driving the pin. Devices cannot drive and receive signals at the
same time. Refer to Section 3.10., item 9 for additional details.

7.6.4.3. Measurement and Test Conditions

C L K

OUTPUT
DELAY

T _val

V _ te s t

V _ tfa ll

V _ th

V _ tl

T _ o n

Tri-State
OUTPUT

OUTPUT
DELAY

V _ tr is e

T _val

T _ o ff

Figure 7-3: Output Timing Measurement Conditions

INPUT
inputs
valid

V_ th

V _ tl

T _ h
T _ su

C L K

V_ test

V_ test

V_ test V_m ax

V_ th

V_ tl

Figure 7-4: Input Timing Measurement Conditions

Revision 2.3

236

Table 7-5: Measurement Condition Parameters

Symbol 3.3V Signaling Units Notes
Vth 0.6Vcc V 1

Vtl 0.2Vcc V 1

Vtest 0.4Vcc V

Vtrise 0.285Vcc V 2

Vtfall 0.615Vcc V 2

Vmax 0.4Vcc V 1

Input Signal
Slew Rate

1.5 V/ns 3

NOTES:

1. The test for the 3.3V environment is done with 0.1*Vcc of overdrive.

Vmax specifies the maximum peak-to-peak waveform allowed for

measuring input timing. Production testing may use different voltage
values but must correlate results back to these parameters.

2. Vtrise and Vtfall are reference voltages for timing measurements only.

Developers of 66 MHz PCI systems need to design buffers that launch
enough energy into a 25 Ω transmission line so that correct input
levels are guaranteed after the first reflection.

3. Outputs will be characterized and measured at the package pin with
the load shown in Figure 7-7. Input signal slew rate will be measured
between 0.3Vcc and 0.6Vcc.

25 Ω 10 pF

1 /2 in . m a x .

o u tp u t
b u f fe r

p in

Figure 7-5: Tval(max) Rising Edge

25 Ω
10 pF

Vcc

1 /2 in . m a x .

Figure 7-6: Tval(max) Falling Edge

Revision 2.3

237

1K Ω
10 pF

o u tp u t
b u f fe r

p in 1 /2 in . m a x .

Vcc

1K Ω

Figure 7-7: Tval (min) and Slew Rate

7.6.5. Vendor Provided Specification

Refer to Section 4.2.5.

7.6.6. Recommendations

7.6.6.1. Pinout Recommendations

Refer to Section 4.2.6.

The 66 MHz PCI electrical specification and physical requirements must be met;
however, the designer is permitted to modify the suggested pinout shown in Figure 4-9
as required.

7.6.6.2. Clocking Recommendations

This section describes a recommended method for routing the 66 MHz PCI clock signal.
Routing the 66 MHz PCI clock as a point-to-point signal from individual low-skew clock
drivers to both system board and add-in card components will greatly reduce signal
reflection effects and optimize clock signal integrity. This, in addition to observing the
physical requirements outlined in Section 4.4.3.1., will minimize clock skew.

Developers must pay careful attention to the clock trace length limits stated in
Section 4.4.3.1. and the velocity limits in Section 4.4.3.3. Figure 7-8 illustrates the
recommended method for routing the 66 MHz PCI clock signal.

Revision 2.3

238

Clock Source

PCI Add-in
Connector

Add-in Board

Device C
66 MHz

66 MHz
Device B

66 MHz
Device A

Figure 7-8: Recommended Clock Routing

7.7. System Board Specification

7.7.1. Clock Uncertainty

The maximum allowable clock skew including jitter is 1 ns. This specification applies
not only at a single threshold point, but at all points on the clock edge that fall in the
switching range defined in Table 7-6 and Figure 7-9. The maximum skew is measured
between any two components,53 not between connectors. To correctly evaluate clock
skew, the system designer must take into account clock distribution on the add-in card as
specified in Section 4.4.

Developers must pay careful attention to the clock trace length limits stated in
Section 4.4.3.1. and the velocity limits in Section 4.4.3.3.

Table 7-6: Clock Skew Parameters

Symbol 66 MHz 3.3V Signaling 33 MHz 3.3V Signaling Units

Vtest 0.4Vcc 0.4Vcc V

Tskew 1 (max) 2 (max) ns

53 The system designer must address an additional source of clock skew. This clock skew occurs between
two components that have clock input trip points at opposite ends of the Vil - Vih range. In certain

circumstances, this can add to the clock skew measurement as described here. In all cases, total clock skew
must be limited to the specified number.

Revision 2.3

239

C L K
(@ D ev ic e # 1)

C L K
(@ D ev ic e # 2)

V_ test
V _ ih

T _s ke w

T _s ke w

T _s ke w

V_ test
V_ il

V_ il

V _ ih

Figure 7-9: Clock Skew Diagram

7.7.2. Reset

Refer to Section 4.3.2.

7.7.3. Pullups

The 66 MHz PCI bus requires a single pullup resistor, supplied by the system board, on
the M66EN pin. Refer to Section 7.7.7. for the resistor value.

7.7.4. Power

7.7.4.1. Power Requirements

Refer to Section 4.3.4.1.

7.7.4.2. Sequencing

Refer to Section 4.3.4.2.

7.7.4.3. Decoupling

Refer to Section 4.3.4.3.

7.7.5. System Timing Budget

Refer to Section 4.3.5.

The total clock period can be divided into four segments. Valid output delay (Tval) and
input setup times (Tsu) are specified by the component specification. Total clock skew
(Tskew) and bus propagation times (Tprop) are system parameters. Tprop is a system
parameter that is indirectly specified by subtracting the other timing budget components
from the cycle time. Table 7-7 lists timing budgets for several bus frequencies.

Revision 2.3

240

Table 7-7: Timing Budgets

Timing Element 33 MHz 66 MHz 50 MHz1 Units Notes

Tcyc 30 15 20 ns

Tval 11 6 6 ns

Tprop 10 5 10 ns 2

Tsu 7 3 3 ns

Tskew 2 1 1 ns 3

NOTES:

1. The 50 MHz example is shown for example purposes only.

2. These times are computed. The other times are fixed. Thus, slowing down the bus clock enables the
system manufacturer to gain additional distance or add additional loads. The component specifications
are required to guarantee operation at 66 MHz.

3. Clock skew specified here includes all sources of skew. If spread spectrum clocking (SSC) is used on the
system board, the maximum clock skew at the input of the device on an add-in card includes SSC
tracking skew.

7.7.6. Physical Requirements

7.7.6.1. Routing and Layout Recommendations for Four-Layer
System Boards

Refer to Section 4.3.6.1.

7.7.6.2. System Board Impedance

Refer to Section 4.3.6.2. Timing numbers are changed according to the tables in this
chapter.

7.7.7. Connector Pin Assignments

The M66EN pin (pin 49B) is the only connector difference between bus segments
capable of 66 MHz operation and those limited to 33 MHz. Refer to Section 4.3.7. for
system board connectors. This pin is a normal ground pin in implementations that are
not capable of 66 MHz operation.

Revision 2.3

241

In implementations that are 66-MHz-capable, the M66EN pin is bused between all
connectors54 within the single logical bus segment that is 66-MHz-capable, and this net
is pulled up with a 5 kΩ resistor to Vcc. Also, this net is connected to the M66EN input

pin of components located on the same logical bus segment of the system board. This
signal is static; there is no stub length restriction.

To complete an AC return path, a 0.01 µF capacitor must be located within 0.25 inches
of the M66EN pin, of each such add-in card connector and must decouple the M66EN
signal to ground. Any attached component or installed add-in card that is not 66-MHz-
capable, must pull the M66EN net to the Vil input level. The remaining components,
add-in cards, and the logical bus segment clock resource are, thereby, signaled to operate
in 33-MHz mode.

7.8. Add-in Card Specifications
The 66 MHz add-in card specifications are the same as the 33 MHz add-in card
specifications (refer to Section 4.4) except as noted in this section. The M66EN pin (pin
49B) is the only connector difference between add-in cards capable of 66 MHz operation
and those limited to 33 MHz. Refer to Section 4.4.1. for the add-in card edge-connector.
The M66EN pin is a normal ground pin in implementations that are not capable of 66
MHz operation.

In implementations that are 66-MHz-capable, the M66EN pin must be decoupled to
ground with a 0.01 µF capacitor, which must be located within 0.25 inches of the edge
contact to complete an AC return path. If the M66EN pin is pulled to the Vil input level,
it indicates that the add-in card must operate in the 33-MHz mode.

54 As a general rule, there will be only one such connector, but more than one are possible in certain cases.

Revision 2.3

242

Revision 2.3

243

Chapter 8
System Support for SMBus

The SMBus interface is based upon the System Management Bus Specification55 (SMBus
2.0 Specification). This two-wire serial interface has low power and low software
overhead characteristics that make it well suited for low-bandwidth system management
functions. The capabilities enabled by the SMBus interface include, but are not limited
to, the following:

• Support for client management technologies

• Support for server management technologies

• Support for thermal sensors and other instrumentation devices on add-in cards

• Add-in card identification when the bus is in the B3 state or when the PCI device is
in the D3hot or D3cold states as defined in the PCI Power Management Interface
Specification56

8.1. SMBus System Requirements
SMBus device interfaces must meet the electrical and protocol requirements in the
SMBus 2.0 Specification.

The SMBus interface connections on the PCI connector are optional. However, if the
SMBus interface is supported, then all of the following requirements must be met.

8.1.1. Power

It is recommended that the system board provide 3.3V auxiliary power to the PCI
connector (pin 14A). This allows an add-in card to maintain SMBus functionality when
the system is in a low power state.

55 System Management Bus (SMBus) Specification, Version 2.0, available from the SMBus website at
http://www.smbus.org.

56 PCI Bus Power Management Interface Specification Version 1.1 available from the PCI Special Interest
Group website at http://www.pcisig.com.

Revision 2.3

244

8.1.2. Physical and Logical SMBus

A physical SMBus segment is defined as a set of SMBus device interfaces whose
SMBCLK and SMBDAT lines are directly connected to one another (i.e., not connected
through an SMBus repeater or bridge). Each physical bus segment must meet the
electrical requirements of the SMBus 2.0 Specification.

A logical SMBus is defined as one or more physical SMBuses having a single SMBus
address space and a single SMBus arbitration domain. Multiple physical SMBus
segments are connected into a single logical SMBus segment by means of bus repeaters.
An SMBus address space is a logical connection of SMBus devices such that two
devices with the same slave address will conflict with one another. An arbitration
domain is a collection of one or more physical buses connected such that bus signal
assertions caused by any device on any physical bus within the arbitration domain are
seen by all devices on all the physical buses within the arbitration domain.

8.1.3. Bus Connectivity

Connection of SMBus to system board expansion slot connectors is optional. However,
if SMBus is connected to one slot in a chassis, it must be connected to all slots in that
chassis. SMBus-connected slots in a chassis must be in the same logical SMBus. This
logical SMBus may optionally be broken during system initialization or hot remove to
allow the system to determine which SMBus device is in which PCI slot, but must be
restored before the end of system initialization and during normal operation.

A typical implementation of a single physical SMBus is illustrated in Figure 8-1. The
SMBus host bus controller is provided by the system.

SMBCLK

SMBDAT
SMBCLK

SMBDAT

3.3Vaux 3.3Vaux

Add-in Card
 #0

Host Bus
Controller

PCI
Host Add-in Cards

SMBCLK

SMBDAT

SMBCLK

SMBDAT

Add-in Card
 #1

Add-in Card
 #n-1

Figure 8-1. A Typical Single Physical SMBus

Revision 2.3

245

An SMBus in any one chassis is not required to support connection to an SMBus in
another chassis. This does not preclude connection to another chassis, but the
specification of any such connection is outside the scope of this document.

System board configurations with one or more SMBus-connected PCI bus segments
must contain a single logical SMBus between all the PCI bus segments. There is no
correlation between PCI bus segments and SMBus physical buses. As such, the SMBus
is wired “around” a PCI bus bridge and not “through” it.

8.1.4 Master and Slave Support

As defined in the SMBus 2.0 Specification, an SMBus transaction occurs between a
master and a slave. A master is a device that issues commands, generates the clock
signal, and terminates the bus transaction. A slave is a device that receives or responds
to the bus transaction.

The system board supporting the SMBus interface must have both slave and master
capability and support the multi-master arbitration mechanism as defined in the SMBus
2.0 Specification.

8.1.5 Addressing and Configuration

An address resolution protocol (ARP) is defined in the SMBus 2.0 Specification that is
used to assign slave addresses to SMBus devices. Although optional in the SMBus 2.0
Specification, it is required that systems that connect the SMBus to PCI slots implement
the ARP for assignment of SMBus slave addresses to SMBus interface devices on PCI
add-in cards. The system must execute the ARP on a logical SMBus whenever any PCI
bus segment associated with the logical SMBus exits the B3 state or a device in an
individual slot associated with the logical SMBus exits the D3cold state. Prior to
executing the ARP, the system must insure that all ARP-capable SMBus interface
devices are returned to their default address state57.

The system may optionally support in a chassis inclusion of a single add-in card with an
SMBus interface device with a fixed address in the range C6h – C9h. Such a system
must not contain SMBus interface devices with a fixed address in this range and must
not assign addresses in this range to other SMBus interface devices on PCI add-in cards.
Such systems are not required to provide mechanisms to resolve conflicts if more than
one such add-in card is installed.

57 The System Management Bus (SMBus) Specification, Version 2.0 allows SMBus devices that are not
associated with PCI add-in cards to have fixed SMBus addresses that are not assigned by the ARP. Such
devices include, for example, system board temperature sensors. The SMBus slave addresses of such
devices must be known to the system prior to the execution of the ARP and are not assigned to any ARP-
capable SMBus devices.

Revision 2.3

246

Implementation Note: Fixed Address SMBus Interface Devices on an
Add-in Card

Versions of the SMBus Specification prior to 2.0 did not include the ARP and SMBus
interface devices compliant with those earlier specifications had fixed slave addresses.
Many systems used such devices on the system board only. With the advent of the need
for SMBus-enabled add-in cards and prior to this specification, a few add-in cards were
introduced for special-purpose applications that included the available fixed-address
SMBus interface devices with slave addresses fixed in the range C6h – C9h. This
specification supports use of such add-in cards for backward compatibility. However, it
is expected that all new designs will use the ARP and thereby avoid address-conflict
problems.

The system may optionally implement a mechanism by which system configuration
software performs a mapping of the associations between SMBus devices and physical
add-in card slots. This mechanism determines the slot number in which an add-in card
resides and associates this number with the address(s) of the SMBus interface device(s)
on that add-in card. The system is permitted to isolate individual slots during the
mapping process but must restore isolated slot connection states once the mapping
process is complete.

8.1.6 Electrical

SMBus physical segments that connect to a PCI connector must use the high-power DC
electrical specifications as defined in the SMBus 2.0 Specification.

The maximum capacitive load for a physical SMBus segment is 400 pF. If an SMBus
physical segment includes PCI expansion slots, a maximum capacitance per add-in card
of 40 pF must be used in calculations. The absolute value of the total leakage current for
an SMBus physical segment, source, and/or sink, must be less than 200 µA measured at
0.1 * Vcc and 0.9 * Vcc.

8.1.7 SMBus Behavior on PCI Reset

When power is applied to an SMBus device, it must perform default initialization of
internal state as specified in the SMBus 2.0 Specification. SMBus device interface logic
is not affected by RST#. This normally allows the SMBus to support communications
when the PCI bus cannot.

8.2 Add-in Card SMBus Requirements

8.2.1 Connection

Only PCI add-in cards that support the SMBus interface as described in the SMBus 2.0
Specification, including the ARP, are permitted to connect to the SMBCLK and
SMBDAT pins. Any PCI add-in card implementing SMBus interface functionality via
the PCI connector must connect to the SMBCLK and SMBDAT pins.

Revision 2.3

247

8.2.2 Master and Slave Support

An add-in card SMBus implementation that is intended to respond to commands or
requests for data from a master must implement SMBus slave functionality and must
support the ARP.

Master capability is optional. However, if an add-in card implementation supports
master capability, it must support multi-master arbitration.

8.2.3 Addressing and Configuration

Add-in card SMBus interface devices must implement the ARP for establishing their
slave addresses as defined in the SMBus 2.0 Specification. Although the ARP is
optional in the SMBus 2.0 Specification, it is required by this specification.

8.2.4 Power

An add-in card is permitted to power its SMBus interface logic from the 3.3Vaux pin on
the PCI connector if the add-in card vendor intends that the add-in card’s SMBus
functionality be available while the system is at a low power consumption state. Such an
add-in card must support PME# from D3cold , as defined in the PCI Power Management
Interface Specification. Alternatively, the SMBus interface logic may be powered from
the standard 3.3V supply.

8.2.5 Electrical

Add-in card SMBus interface devices must comply with the high-power electrical
requirements stated in the SMBus 2.0 Specification.

Add-in card designers must meet the maximum-capacitance-per-add-in card requirement
of 40 pF per SMBus signal pin. The 40 pF limit includes:

• The sum of device capacitance loads

• The capacitance of trace length from the add-in card’s PCI connector

The absolute value of the sum of the leakage current, source, and/or sink, for all SMBus
interface devices on the add-in card must be less than 20 µA measured at 0.1* Vcc and
0.9 * Vcc.

There is no limitation on the number of SMBus devices on an add-in card provided these
requirements are met.

Implementation Note: SMBus Loading in a PCI Low-Power State

When/if power is removed from SMBus interface logic when an associated PCI function
is transitioned to a low-power state, the SMBus clock and data lines must not be loaded
so as to make the SMBus inoperative. Other SMBus interfaces on the bus may still be
powered and operational. The designer is reminded to observe the leakage current
parameters in the SMBus 2.0 Specification for unpowered SMBus interfaces.

Revision 2.3

248

Revision 2.3

249

Appendix A
Special Cycle Messages

Special Cycle message encodings are defined in this appendix. Reserved encodings should not
be used. PCI SIG member companies that require special encodings outside the range of
currently defined encodings should send a written request to the PCI SIG Board of Directors
The Board of Directors will allocate and define special cycle encodings based upon
information provided by the requester specifying usage needs and future product or application
direction.

Message Encodings

AD[15::0] Message Type

0000h SHUTDOWN
0001h HALT
0002h x86 architecture-specific
0003h Reserved

through
FFFFh Reserved

SHUTDOWN is a broadcast message indicating the processor is entering into a
shutdown mode.

HALT is a broadcast message from the processor indicating it has executed a halt
instruction.

The x86 architecture-specific encoding is a generic encoding for use by x86 processors
and chipsets. AD[31::16] determine the specific meaning of the Special Cycle message.
Specific meanings are defined by Intel Corporation and are found in product specific
documentation.

Use of Specific Encodings
Use or generation of architecture-specific encodings is not limited to the requester of the
encoding. Specific encodings may be used by any vendor in any system. These
encodings allow system specific communication links between cooperating PCI devices
for purposes which cannot be handled with the standard data transfer cycle types.

Revision 2.3

250

Revision 2.3

251

Appendix B
State Machines

This appendix describes master and target state machines. These state machines are for
illustrative purposes only and are included to help illustrate PCI protocol. Actual
implementations should not directly use these state machines. The machines are
believed to be correct; however, if a conflict exists between the specification and the
state machines, the specification has precedence.

The state machines use three types of variables: states, PCI signals, and internal signals.
They can be distinguished from each other by:

State in a state machine = STATE
PCI signal = SIGNAL
Internal signal = Signal

The state machines assume no delays from entering a state until signals are generated
and available for use in the machine. All PCI signals are latched on the rising edge of
CLK.

The state machines support some options (but not all) discussed in the PCI specification.
A discussion about each state and the options illustrated follows the definition of each
state machine. The target state machine assumes medium decode and, therefore, does
not describe fast decode. If fast decode is implemented, the state diagrams (and their
associated equations) will need to be changed to support fast decode. Caution needs to
be taken when supporting fast decode (Refer to Section 3.4.2.).

The bus interface consists of two parts. The first is the bus sequencer that performs the
actual bus operation. The second part is the backend or hardware application. In a
master, the backend generates the transaction and provides the address, data, command,
Byte Enables, and the length of the transfer. It is also responsible for the address when a
transaction is retried. In a target, the backend determines when a transaction is
terminated. The sequencer performs the bus operation as requested and guarantees the
PCI protocol is not violated. Note that the target implements a resource lock.

The state machine equations assume a logical operation where "*" is an AND function
and has precedence over "+" which is an OR function. Parentheses have precedence
over both. The "!" character is used to indicate the NOT of the variable. In the state
machine equations, the PCI SIGNALs represent the actual state of the signal on the PCI
bus. Low true signals will be true or asserted when they appear as !SIGNAL# and will
be false or deasserted when they appear as SIGNAL#. High true signals will be true or

Revision 2.3

252

asserted when they appear as SIGNAL and will be false or deasserted when they appear
as !SIGNAL. Internal signals will be true when they appear as Signal and false when
they appear as !Signal. A few of the output enable equations use the "==" symbol to
refer to the previous state. For example:

OE[PAR] == [S_DATA * !TRDY# * (cmd=read)]

This indicates the output buffer for PAR is enabled when the previous state is S_DATA,
TRDY# is asserted, the transaction is a read. The first state machine presented is for the
target, the second is the master. Caution needs to be taken when an agent is both a
master and a target. Each must have its own state machine that can operate
independently of the other to avoid deadlocks. This means that the target state machine
cannot be affected by the master state machine. Although they have similar states, they
cannot be built into a single machine.

Note: LOCK# can only be implemented by a bridge; refer to Appendix F for details
about the use of LOCK#. For a non-bridge device, the use of LOCK# is prohibited.

F R E E L O C K ED

ID LE B_BU SY

S_DATA

TU R N _ AR

BACKOFF

Target LOCK Machine

Target
Sequencer

Machine

IDLE or TURN_AR -- Idle condition or completed transaction on bus.

goto IDLE if FRAME#
goto B_BUSY if !FRAME# * !Hit

Revision 2.3

253

B_BUSY -- Not involved in current transaction.

goto B_BUSY if (!FRAME# + !D_done) * !Hit
goto IDLE if FRAME# * D_done + FRAME# * !D_done * !DEVSEL#
goto S_DATA if (!FRAME# + !IRDY#) * Hit * (!Term + Term * Ready)

* (FREE + LOCKED * L_lock#)
goto BACKOFF *if (!FRAME# + !IRDY#) * Hit

* (Term * !Ready + LOCKED * !L_lock#)

S_DATA -- Agent has accepted request and will respond.

goto S_DATA if !FRAME# * !STOP# * !TRDY# * IRDY#
+ !FRAME# * STOP# + FRAME# * TRDY# * STOP#

goto BACKOFF if !FRAME# * !STOP# * (TRDY# + !IRDY#)
goto TURN_AR if FRAME# * (!TRDY# + !STOP#)

BACKOFF -- Agent busy unable to respond at this time.

goto BACKOFF if !FRAME#
goto TURN_AR if FRAME#

Target LOCK Machine

FREE -- Agent is free to respond to all transactions.

goto LOCKED if !FRAME# * LOCK# * Hit * (IDLE + TURN_AR)
+ L_lock# * Hit * B_BUSY)

goto FREE if ELSE

LOCKED -- Agent will not respond unless LOCK# is deasserted during the address
phase.

goto FREE if FRAME# * LOCK#
goto LOCKED if ELSE

Target of a transaction is responsible to drive the following signals:58

OE[AD[31::00]] = (S_DATA + BACKOFF) * Tar_dly * (cmd = read)
OE[TRDY#] = BACKOFF + S_DATA + TURN_AR (See note.)

OE[STOP#] = BACKOFF + S_DATA + TURN_AR (See note.)

OE[DEVSEL#] = BACKOFF + S_DATA + TURN_AR (See note.)

OE[PAR] = OE[AD[31::00]] delayed by one clock
OE[PERR#] = R_perr + R_perr (delayed by one clock)

Note: If the device does fast decode, OE[PERR#] must be delayed one clock to
avoid contention.

58 When the target supports the Special Cycle command, an additional term must be included to ensure
these signals are not enabled during a Special Cycle transaction.

Revision 2.3

254

TRDY# = !(Ready * !T_abort * S_DATA * (cmd=write + cmd=read * Tar_dly))
STOP# = ![BACKOFF + S_DATA * (T_abort + Term)

* (cmd=write + cmd=read * Tar_dly)]
DEVSEL# = ![(BACKOFF + S_DATA) * !T_abort]
PAR = even parity across AD[31::00] and C/BE#[3::0] lines.
PERR# = R_perr

Definitions

These signals are between the target bus sequencer and the backend. They indicate how
the bus sequencer should respond to the current bus operation.

Hit = Hit on address decode.
D_done = Decode done. Device has completed the address decode.
T_abort = Target is in an error condition and requires the current transaction to stop.
Term = Terminate the transaction. (Internal conflict or > n wait states.)
Ready = Ready to transfer data.
L_lock# = Latched (during address phase) version of LOCK#.
Tar_dly = Turn around delay only required for zero wait state decode.
R_perr = Report parity error is a pulse of one PCI clock in duration.
Last_target = Device was the target of the last (prior) PCI transaction.

The following paragraphs discuss each state and describe which equations can be
removed if some of the PCI options are not implemented.

The IDLE and TURN_AR are two separate states in the state machine, but are combined
here because the state transitions are the same from both states. They are implemented
as separate states because active signals need to be deasserted before the target tri-states
them.

If the target cannot do single cycle address decode, the path from IDLE to S_DATA can
be removed. The reason the target requires the path from the TURN_AR state to
S_DATA and B_BUSY is for back-to-back bus operations. The target must be able to
decode back-to-back transactions.

B_BUSY is a state where the agent waits for the current transaction to complete and the
bus to return to the Idle state. B_BUSY is useful for devices that do slow address
decode or perform subtractive decode. If the target does neither of these two options, the
path to S_DATA and BACKOFF may be removed. The term "!Hit" may be removed
from the B_BUSY equation also. This reduces the state to waiting for the current bus
transaction to complete.

S_DATA is a state where the target transfers data and there are no optional equations.

BACKOFF is where the target goes after it asserts STOP# and waits for the master to
deassert FRAME#.

FREE and LOCKED refer to the state of the target with respect to a lock operation. If
the target does not implement LOCK#, then these states are not required. FREE
indicates when the agent may accept any request when it is the target. If LOCKED, the
target will retry any request when it is the target unless LOCK# is deasserted during the
address phase. The agent marks itself locked whenever it is the target of a transaction
and LOCK# is deasserted during the address phase. It is a little confusing for the target
to lock itself on a transaction that is not locked. However, from an implementation point
of view, it is a simple mechanism that uses combinatorial logic and always works. The
device will unlock itself at the end of the transaction when it detects FRAME# and
LOCK# both deasserted.

Revision 2.3

255

The second equation in the goto LOCKED in the FREE state can be removed if fast
decode is done. The first equation can be removed if medium or slow decode is done.
L_lock# is LOCK# latched during the address phase and is used when the agent's decode
completes.

IDLE

S_TAR

TURN_AR

ADDR

M_DATA

DR_BUS

FREE BUSY

Master LOCK Machine

Master
Sequencer
Machine

Master Sequencer Machine

IDLE -- Idle condition on bus.

goto ADDR if (Request * !Step) * !GNT# * FRAME# * IRDY#
goto DR_BUS if (Request * Step + !Request) * !GNT# * FRAME# * IRDY#

goto IDLE if ELSE

ADDR -- Master starts a transaction.

goto M_DATA on the next rising edge of CLK.

Revision 2.3

256

M_DATA -- Master transfers data.

goto M_DATA if !FRAME# + FRAME# * TRDY# * STOP#
* !Dev_to

goto ADDR if (Request *!Step) * !GNT# * FRAME# * !TRDY# *
STOP# * L-cycle * (Sa +FB2B_Ena)

goto S_TAR if FRAME# * !STOP# + FRAME# * Dev_to
goto TURN_AR if ELSE

TURN_AR -- Transaction complete, do housekeeping.

goto ADDR if (Request * !Step) * !GNT#
goto DR_BUS if (Request * Step + !Request) * !GNT#
goto IDLE if GNT#

S_TAR -- Stop was asserted, do turn around cycle.

goto DR_BUS if !GNT#
goto IDLE if GNT#

DR_BUS -- Bus parked at this agent or agent is using address stepping.

goto DR_BUS if (Request * Step + !Request)* !GNT#
goto ADDR if (Request * !Step) * !GNT#
goto IDLE if GNT#

Master LOCK Machine

FREE -- LOCK# is not in use (not owned).

goto FREE if LOCK# + !LOCK# * Own_lock
goto BUSY if !LOCK# * !Own_lock

BUSY -- LOCK# is currently being used (owned).

goto FREE if LOCK# * FRAME#
goto BUSY if !LOCK# + !FRAME#

Revision 2.3

257

The master of the transaction is responsible to drive the following signals:

Enable the output buffers:

OE[FRAME#] = ADDR + M_DATA
OE[C/BE#[3::0]] = ADDR + M_DATA + DR_BUS

if ADDR drive command
if M_DATA drive byte enables
if DR_BUS if (Step * Request) drive command else drive lines to a valid state

OE[AD[31::00] = ADDR + M_DATA * (cmd=write) + DR_BUS
if ADDR drive address
if M_DATA drive data
if DR_BUS if (Step * Request) drive address else drive lines to a valid state

OE [LOCK#] = Own_lock * M_DATA + OE [LOCK#] * (!FRAME# + !LOCK#)
OE[IRDY#] == [M_DATA + ADDR]
OE[PAR] = OE[AD[31::00]] delayed by one clock
OE[PERR#] = R_perr + R_perr (delayed by one clock)

The following signals are generated from state and sampled (not asynchronous) bus
signals.

FRAME# = !(ADDR + M_DATA * !Dev_to * {[!Comp
 * (!To + !GNT#) * STOP#] + !Ready })

IRDY# = ![M_DATA * (Ready + Dev_to)]
REQ# = ![(Request * !Lock_a + Request * Lock_a * FREE)

 *!(S_TAR * Last State was S_TAR)]

LOCK# = Own_lock * ADDR + Target_abort
 + Master_abort + M_DATA * !STOP# * TRDY# * !Ldt
 + Own_lock * !Lock_a * Comp * M_DATA * FRAME# * !TRDY#

PAR = even parity across AD[31::00] and C/BE#[3::0] lines.
PERR# = R_perr

Master_abort = (M_DATA * Dev_to)
Target_abort = (!STOP# * DEVSEL# * M_DATA * FRAME# * !IRDY#)
Own_lock = LOCK# * FRAME# * IRDY# * Request * !GNT# * Lock_a

 + Own_lock * (!FRAME# + !LOCK#)

Revision 2.3

258

Definitions

These signals go between the bus sequencer and the backend. They provide information
to the sequencer when to perform a transaction and provide information to the backend
on how the transaction is proceeding. If a cycle is retried, the backend will make the
correct modification to the affected registers and then indicate to the sequencer to
perform another transaction. The bus sequencer does not remember that a transaction
was retried or aborted but takes requests from the backend and performs the PCI
transaction.

Master_abort = The transaction was aborted by the master. (No DEVSEL#.)
Target_abort = The transaction was aborted by the target.
Step = Agent using address stepping (wait in the state until !Step).
Request = Request pending.
Comp = Current transaction in last data phase.
L-cycle = Last cycle was a write.
To = Master timeout has expired.
Dev_to = Devsel timer has expired without DEVSEL# being asserted.
Sa = Next transaction to same agent as previous transaction.
Lock_a = Request is a locked operation.
Ready = Ready to transfer data.
Sp_cyc = Special Cycle command.
Own_lock = This agent currently owns LOCK#.
Ldt = Data was transferred during a LOCK operation.
R_perr = Report parity error is a pulse one PCI clock in duration.
FB2B_Ena = Fast Back-to-Back Enable (Configuration register bit).

The master state machine has many options built in that may not be of interest to some
implementations. Each state will be discussed indicating what affect certain options
have on the equations.

IDLE is where the master waits for a request to do a bus operation. The only option in
this state is the term "Step". It may be removed from the equations if address stepping is
not supported. All paths must be implemented. The path to DR_BUS is required to
insure that the bus is not left floating for long periods. The master whose GNT# is
asserted must go to the drive bus if its Request is not asserted.

ADDR has no options and is used to drive the address and command on the bus.

M_DATA is where data is transferred. If the master does not support fast back-to-back
transactions, the path to the ADDR state is not required.

The equations are correct from the protocol point of view. However, compilers may
give errors when they check all possible combinations. For example, because of
protocol, Comp cannot be asserted when FRAME# is deasserted. Comp indicates the
master is in the last data phase, and FRAME# must be deasserted for this to be true.

TURN_AR is where the master deasserts signals in preparation for tri-stating them. The
path to ADDR may be removed if the master does not do back-to-back transactions.

S_TAR could be implemented a number of ways. The state was chosen to clarify that
"state" needs to be remembered when the target asserts STOP#.

Revision 2.3

259

DR_BUS is used when GNT# has been asserted, and the master either is not prepared to
start a transaction (for address stepping) or has none pending. If address stepping is not
implemented, then the equation in goto DR_BUS that has "Step" may be removed and
the goto ADDR equation may also remove "Step".

If LOCK# is not supported by the master, the FREE and BUSY states may be removed.
These states are for the master to know the state of LOCK# when it desires to do a
locked transaction. The state machine simply checks for LOCK# being asserted. Once
asserted, it stays BUSY until FRAME# and LOCK# are both deasserted signifying that
LOCK# is now free.

Revision 2.3

260

Revision 2.3

261

Appendix C
Operating Rules

This appendix is not a complete list of rules of the specification and should not be used
as a replacement for the specification. This appendix only covers the basic protocol and
requirements contained in Chapter 3. It is meant to be used as an aid or quick reference
to the basic rules and relationships of the protocol.

When Signals are Stable
1. The following signals are guaranteed to be stable on all rising edges of CLK once

reset has completed: LOCK#, IRDY#, TRDY#, FRAME#, DEVSEL#, STOP#,
REQ#, GNT#, REQ64#, ACK64#, SERR# (on falling edge only), and PERR#.

2. Address/Data lines are guaranteed to be stable at the specified clock edge as follows:

a. Address -- AD[31::00] are stable regardless of whether some are logical don't
cares on the first clock that samples FRAME# asserted.

b. Address -- AD[63::32] are stable and valid during the first clock after REQ64#
assertion when 32-bit addressing is being used (SAC), or the first two clocks
after REQ64# assertion when 64-bit addressing is used (DAC). When REQ64#
is deasserted, AD[63::32] are pulled up by the central resource.

c. Data -- AD[31::00] are stable and valid regardless which byte lanes are
involved in the transaction on reads when TRDY# is asserted and on writes
when IRDY# is asserted. At any other time, they may be indeterminate. The
AD lines cannot change until the current data phase completes once IRDY# is
asserted on a write transaction or TRDY# is asserted on a read transaction.

d. Data -- AD[63::32] are stable and valid regardless which byte lanes are
involved in the transaction when ACK64# is asserted and either TRDY# is
asserted on reads, or IRDY# is asserted on writes. At any other time, they may
be indeterminate.

e. Data -- Special cycle command -- AD[31::00] are stable and valid regardless
which byte lanes are involved in the transaction when IRDY# is asserted.

f. Do not gate asynchronous data directly onto PCI while IRDY# is asserted on a
write transaction and while TRDY# is asserted on a read transaction.

Revision 2.3

262

3. Command/Byte enables are guaranteed to be stable at the specified clock edge as
follows:

a. Command -- C/BE[3::0]# are stable and valid the first time FRAME# is
sampled asserted and contain the command codes. C/BE[7::4]# are stable and
valid during the first clock after REQ64# assertion when 32-bit addressing is
being used (SAC) and are reserved. C/BE[7::4]# are stable and valid during the
first two clocks after REQ64# assertion when 64-bit addressing is used (DAC)
and contain the actual bus command. When REQ64# is deasserted, the
C/BE[7::4]# are pulled up by the central resource.

b Byte Enables -- C/BE[3::0]# are stable and valid the clock following the
address phase and each completed data phase and remain valid every clock
during the entire data phase regardless if wait states are inserted and indicate
which byte lanes contain valid data. C/BE[7::4]# have the same meaning as
C/BE[3::0]# except they cover the upper 4 bytes when REQ64# is asserted.

4. PAR is stable and valid one clock following the valid time of AD[31::00]. PAR64
is stable and valid one clock following the valid time of AD[63::32].

5. IDSEL is only stable and valid the first clock FRAME# is asserted when the access
is a configuration command. IDSEL is indeterminate at any other time.

6. RST#, INTA#, INTB#, INTC#, and INTD# are not qualified or synchronous.

Master Signals
7. A transaction starts when FRAME# is asserted for the first time.

8. The following govern FRAME# and IRDY# in all PCI transactions.

a. FRAME# and its corresponding IRDY# define the Busy/Idle state of the bus;
when either is asserted, the bus is busy; when both are deasserted, the bus is in
the Idle state.

b. Once FRAME# has been deasserted, it cannot be reasserted during the same
transaction.

c. FRAME# cannot be deasserted unless IRDY# is asserted. (IRDY# must always
be asserted on the first clock edge that FRAME# is deasserted.)

d. Once a master has asserted IRDY#, it cannot change IRDY# or FRAME# until
the current data phase completes.

e. The master must deassert IRDY# the clock after the completion of the last data
phase.

9. When FRAME# and IRDY# are deasserted, the transaction has ended.

10. When the current transaction is terminated by the target (STOP# asserted), the
master must deassert its REQ# signal before repeating the transaction. A device
containing a single source of master activity must deassert REQ# for a minimum of
two clocks; one being when the bus goes to the Idle state (at the end of the
transaction where STOP# was asserted) and either the clock before or the clock
after the Idle state. A device containing multiple sources of master activity is
permitted to allow each source to use the bus without deasserting REQ# even if one
or more sources are target terminated. However, the device must deassert REQ# for
two clocks, one of which while the bus is Idle before any transaction that was target
terminated can be repeated.

Revision 2.3

263

11. A master that is target terminated with Retry must unconditionally repeat the same
request until it completes; however, it is not required to repeat the transaction when
terminated with Disconnect.

Target Signals
12. The following general rules govern FRAME#, IRDY#, TRDY#, and STOP# while

terminating transactions.

a. A data phase completes on any rising clock edge on which IRDY# is asserted
and either STOP# or TRDY# is asserted.

b. Independent of the state of STOP#, a data transfer takes place on every rising
edge of clock where both IRDY# and TRDY# are asserted.

c. Once the target asserts STOP#, it must keep STOP# asserted until FRAME# is
deasserted, whereupon it must deassert STOP#.

d. Once a target has asserted TRDY# or STOP#, it cannot change DEVSEL#,
TRDY#, or STOP# until the current data phase completes.

e. Whenever STOP# is asserted, the master must deassert FRAME# as soon as
IRDY# can be asserted.

f. If not already deasserted, TRDY#, STOP#, and DEVSEL# must be deasserted
the clock following the completion of the last data phase and must be tri-stated
the next clock.

13. An agent claims to be the target of the access by asserting DEVSEL#.

14. DEVSEL# must be asserted with, or prior to, the edge at which the target enables its
outputs (TRDY#, STOP#, or (on a read) AD lines).

15. Once DEVSEL# has been asserted, it cannot be deasserted until the last data phase
has completed, except to signal Target-Abort.

Data Phases
16. The source of the data is required to assert its xRDY# signal unconditionally when

data is valid (IRDY# on a write transaction, TRDY# on a read transaction).

17. Data is transferred between master and target on each clock edge for which both
IRDY# and TRDY# are asserted.

18. Last data phase completes when:

a. FRAME# is deasserted and TRDY# is asserted (normal termination) or

b. FRAME# is deasserted and STOP# is asserted (target termination) or

c. FRAME# is deasserted and the device select timer has expired (Master-Abort)
or

d. DEVSEL# is deasserted and STOP# is asserted (Target-Abort).

Revision 2.3

264

19. Committing to complete a data phase occurs when the target asserts either TRDY#
or STOP#. The target commits to:

a. Transfer data in the current data phase and continue the transaction (if a burst)
by asserting TRDY# and not asserting STOP#.

b. Transfer data in the current data phase and terminate the transaction by asserting
both TRDY# and STOP#.

c. Not transfer data in the current data phase and terminate the transaction by
asserting STOP# and deasserting TRDY#.

d. Not transfer data in the current data phase and terminate the transaction with an
error condition (Target-Abort) by asserting STOP# and deasserting TRDY# and
DEVSEL#.

20. The target has not committed to complete the current data phase while TRDY# and
STOP# are both deasserted. The target is simply inserting wait states.

Arbitration
21. The agent is permitted to start a transaction only in the following two cases:

a. GNT# is asserted and the bus is idle (FRAME# and IRDY# are deasserted).

b. GNT# is asserted in the last data phase of a transaction and the agent is starting
a new transaction using fast back-to-back timing (FRAME# is deasserted and
TRDY# or STOP# is asserted or the transaction terminates with Master-Abort).

22. The arbiter may deassert an agent's GNT# on any clock.

23. Once asserted, GNT# may be deasserted according to the following rules.

a. If GNT# is deasserted and FRAME# is asserted on the same clock, the bus
transaction is valid and will continue.

b. One GNT# can be deasserted coincident with another GNT# being asserted if
the bus is not in the Idle state. Otherwise, a one clock delay is required between
the deassertion of a GNT# and the assertion of the next GNT# or else there may
be contention on the AD lines and PAR.

c. While FRAME# is deasserted, GNT# may be deasserted at any time in order to
service a higher priority59 master or in response to the associated REQ# being
deasserted.

24. When the arbiter asserts an agent's GNT# and the bus is in the Idle state, that agent
must enable its AD[31::00], C/BE[3::0]#, and (one clock later) PAR output buffers
within eight PCI clocks (required), while two-three clocks is recommended.

Latency
25. All targets are required to complete the initial data phase of a transaction (read or

write) within 16 clocks from the assertion of FRAME#. Host bus bridges have an
exception (refer to Section 3.5.1.1.).

59 Higher priority here does not imply a fixed priority arbitration, but refers to the agent that would win
arbitration at a given instant in time.

Revision 2.3

265

26. The target is required to complete a subsequent data phase within eight clocks from
the completion of the previous data phase.

27. A master is required to assert its IRDY# within eight clocks for any given data phase
(initial and subsequent).

Device Selection
28. A target must do a full decode before driving/asserting DEVSEL# or any other

target response signal.

29. A target must assert DEVSEL# (claim the transaction) before it is allowed to issue
any other target response.

30. In all cases except Target-Abort, once a target asserts DEVSEL# it must not
deassert DEVSEL# until FRAME# is deasserted (IRDY# is asserted) and the last
data phase has completed.

31. A PCI device is a target of a Type 0 configuration transaction (read or write) only if
its IDSEL is asserted, and AD[1::0] are “00” during the address phase of the
command.

Parity
32. Parity is generated according to the following rules:

a. Parity is calculated the same on all PCI transactions regardless of the type or
form.

b. The number of “1”s on AD[31::00], C/BE[3::0]#, and PAR equals an even
number.

c. The number of “1”s on AD[63::32], C/BE[7::4]#, and PAR64 equals an even
number.

d. Generating parity is not optional; it must be done by all PCI-compliant devices.

33. Only the master of a corrupted data transfer is allowed to report parity errors to
software using mechanisms other than PERR# (i.e., requesting an interrupt or
asserting SERR#). In some cases, the master delegates this responsibility to a PCI-
to-PCI bridge handling posted memory write data. See the PCI-to-PCI Bridge
Architecture Specification for details.

Revision 2.3

266

Revision 2.3

267

Appendix D
Class Codes

This appendix describes the current Class Code encodings. This list may be enhanced at
any time. The PCI SIG web pages contain the latest version. Companies wishing to
define a new encoding should contact the PCI SIG. All unspecified values are reserved
for SIG assignment.

Base Class Meaning

00h Device was built before Class Code
definitions were finalized

01h Mass storage controller

02h Network controller

03h Display controller

04h Multimedia device

05h Memory controller

06h Bridge device

07h Simple communication controllers

08h Base system peripherals

09h Input devices

0Ah Docking stations

0Bh Processors

0Ch Serial bus controllers

0Dh Wireless controller

0Eh Intelligent I/O controllers

0Fh Satellite communication controllers

10h Encryption/Decryption controllers

11h Data acquisition and signal processing
controllers

12h - FEh Reserved

FFh Device does not fit in any defined
classes

Revision 2.3

268

Base Class 00h

This base class is defined to provide backward compatibility for devices that were built
before the Class Code field was defined. No new devices should use this value and
existing devices should switch to a more appropriate value if possible.

For class codes with this base class value, there are two defined values for the remaining
fields as shown in the table below. All other values are reserved.

Base Class Sub-Class Interface Meaning

00h
00h 00h All currently implemented devices

except VGA-compatible devices
01h 00h VGA-compatible device

Base Class 01h

This base class is defined for all types of mass storage controllers. Several sub-class
values are defined. The IDE controller class is the only one that has a specific register-
level programming interface defined.

Base Class Sub-Class Interface Meaning
00h 00h SCSI bus controller
01h xxh IDE controller (see below)

01h 02h 00h Floppy disk controller
03h 00h IPI bus controller
04h 00h RAID controller

20h ATA controller with single DMA05h
30h ATA controller with chained DMA

80h 00h Other mass storage controller

Figure D-1: Programming Interface Byte Layout for IDE Controller Class Code

The PCI SIG document PCI IDE Controller Specification completely describes the
layout and meaning of bits 0 through 3 in the Programming Interface byte. The
document Bus Master Programming Interface for IDE ATA Controllers describes the
meaning of bit 7 in the Programming Interface byte. This document can be obtained via
FAX by calling (503)291-2569 and requesting document 8038.

Revision 2.3

269

Base Class 02h

This base class is defined for all types of network controllers. Several sub-class values
are defined. There are no register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h Ethernet controller

02h 01h 00h Token Ring controller
02h 00h FDDI controller
03h 00h ATM controller
04h 00h ISDN controller
05h 00h WorldFip controller
06h xxh (see

below)
PICMG 2.14 Multi Computing

80h 00h Other network controller

For information on the use of this field see the PICMG 2.14 Multi Computing
Specification (http://www.picmg.com).

Base Class 03h

This base class is defined for all types of display controllers. For VGA devices (Sub-
Class 00h), the programming interface byte is divided into a bit field that identifies
additional video controller compatibilities. A device can support multiple interfaces by
using the bit map to indicate which interfaces are supported. For the XGA devices (Sub-
Class 01h), only the standard XGA interface is defined. Sub-Class 02h is for controllers
that have hardware support for 3D operations and are not VGA compatible.

Base Class Sub-Class Interface Meaning
00000000b VGA-compatible controller. Memory

addresses 0A0000h through
0BFFFFh. I/O addresses 3B0h to
3BBh and 3C0h to 3DFh and all
aliases of these addresses.

03h 00h 00000001b 8514-compatible controller -- 2E8h
and its aliases, 2EAh-2EFh

01h 00h XGA controller
02h 00h 3D controller
80h 00h Other display controller

Base Class 04h

This base class is defined for all types of multimedia devices. Several sub-class values
are defined. There are no register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h Video device
01h 00h Audio device

04h 02h 00h Computer telephony device
80h 00h Other multimedia device

Revision 2.3

270

Base Class 05h

This base class is defined for all types of memory controllers. Several sub-class values
are defined. There are no register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h RAM

05h 01h 00h Flash
80h 00h Other memory controller

Base Class 06h

This base class is defined for all types of bridge devices. A PCI bridge is any PCI device
that maps PCI resources (memory or I/O) from one side of the device to the other.
Several sub-class values are defined.

Base Class Sub-Class Interface Meaning
00h 00h Host bridge
01h 00h ISA bridge
02h 00h EISA bridge

06h 03h 00h MCA bridge
00h PCI-to-PCI bridge

04h 01h Subtractive Decode PCI-to-PCI
bridge. This interface code identifies
the PCI-to-PCI bridge as a device that
supports subtractive decoding in
addition to all the currently defined
functions of a PCI-to-PCI bridge.

05h 00h PCMCIA bridge
06h 00h NuBus bridge
07h 00h CardBus bridge
08h xxh RACEway bridge (see below)

09h

40h Semi-transparent PCI-to-PCI bridge
with the primary PCI bus side facing
the system host processor

80h Semi-transparent PCI-to-PCI bridge
with the secondary PCI bus side
facing the system host processor

0Ah 00h InfniBand-to-PCI host bridge
80h 00h Other bridge device

RACEway is an ANSI standard (ANSI/VITA 5-1994) switching fabric. For the
Programming Interface bits, [7:1] are reserved, read-only, and return zeros. Bit 0 defines
the operation mode and is read-only:

0 - Transparent mode

1 - End-point mode

Revision 2.3

271

Base Class 07h

This base class is defined for all types of simple communications controllers. Several
sub-class values are defined, some of these having specific well-known register-level
programming interfaces.

Base Class Sub-Class Interface Meaning
00h Generic XT-compatible serial

controller
00h 01h 16450-compatible serial controller

02h 16550-compatible serial controller
03h 16650-compatible serial controller
04h 16750-compatible serial controller
05h 16850-compatible serial controller

06h 16950-compatible serial controller
00h Parallel port
01h Bi-directional parallel port

01h 02h ECP 1.X compliant parallel port
03h IEEE1284 controller
FEh IEEE1284 target device (not a

controller)
07h 02h 00h Multiport serial controller

00h Generic modem
01h Hayes compatible modem, 16450-

compatible interface (see below)
03h 02h Hayes compatible modem, 16550-

compatible interface (see below)
03h Hayes compatible modem, 16650-

compatible interface (see below)
04h Hayes compatible modem, 16750-

compatible interface (see below)
04h 00h GPIB (IEEE 488.1/2) controller
80h 00h Other communications device

For Hayes-compatible modems, the first base address register (at offset 10h) maps the
appropriate compatible (i.e., 16450, 16550, etc.) register set for the serial controller at the
beginning of the mapped space. Note that these registers can be either memory or I/O
mapped depending what kind of BAR is used.

Revision 2.3

272

Base Class 08h

This base class is defined for all types of generic system peripherals. Several sub-class
values are defined, most of these having a specific well-known register-level
programming interface.

Base Class Sub-Class Interface Meaning
00h Generic 8259 PIC
01h ISA PIC
02h EISA PIC

00h 10h I/O APIC interrupt controller (see
below)

20h I/O(x) APIC interrupt controller
00h Generic 8237 DMA controller

01h 01h ISA DMA controller
08h 02h EISA DMA controller

00h Generic 8254 system timer
02h 01h ISA system timer.

02h EISA system timers (two timers)
03h 00h Generic RTC controller

01h ISA RTC controller
04h 00h Generic PCI Hot-Plug controller
80h 00h Other system peripheral

For I/O APIC Interrupt Controller, the Base Address Register at offset 0x10 is used to
request a minimum of 32 bytes of non-prefetchable memory. Two registers within that
space are located at Base+0x00 (I/O Select Register) and Base+0x10 (I/O Window
Register). For a full description of the use of these registers, refer to the data sheet for the
Intel 8237EB in the 82420/82430 PCIset EISA Bridge Databook #290483-003.

Revision 2.3

273

Base Class 09h

This base class is defined for all types of input devices. Several sub-class values are
defined. A register-level programming interface is defined for gameport controllers.

Base Class Sub-Class Interface Meaning
00h 00h Keyboard controller
01h 00h Digitizer (pen)
02h 00h Mouse controller

09h 03h 00h Scanner controller
04h 00h Gameport controller (generic)

10h Gameport controller (see below)
80h 00h Other input controller

A gameport controller with a Programming Interface == 10h indicates that any Base
Address registers in this function that request/assign I/O address space, the registers in
that I/O space conform to the standard ‘legacy’ game ports. The byte at offset 00h in an
I/O region behaves as a legacy gameport interface where reads to the byte return
joystick/gamepad information, and writes to the byte start the RC timer. The byte at
offset 01h is an alias of the byte at offset 00h. All other bytes in an I/O region are
unspecified and can be used in vendor unique ways.

Base Class 0Ah

This base class is defined for all types of docking stations. No specific register-level
programming interfaces are defined.

Base Class Sub-Class Interface Meaning
0Ah 00h 00h Generic docking station

80h 00h Other type of docking station

Base Class 0Bh

This base class is defined for all types of processors. Several sub-class values are defined
corresponding to different processor types or instruction sets. There are no specific
register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h 386
01h 00h 486

0Bh 02h 00h Pentium
10h 00h Alpha
20h 00h PowerPC
30h 00h MIPS
40h 00h Co-processor

Revision 2.3

274

Base Class 0Ch

This base class is defined for all types of serial bus controllers. Several sub-class values
are defined. There are specific register-level programming interfaces defined for
Universal Serial Bus controllers and IEEE 1394 controllers.

Base Class Sub-Class Interface Meaning
00 00h IEEE 1394 (FireWire)

10h IEEE 1394 following the 1394
OpenHCI specification

01h 00h ACCESS.bus
02h 00h SSA

00h Universal Serial Bus (USB) following
the Universal Host Controller
Specification

0Ch 03h 10h Universal Serial Bus (USB) following
the Open Host Controller
Specification

20h USB2 host controller following the
Intel Enhanced Host Controller
Interface

80h Universal Serial Bus with no specific
programming interface

FEh USB device (not host controller)
04h 00h Fibre Channel
05h 00h SMBus (System Management Bus)
06h 00h InfiniBand

00h IPMI SMIC Interface
01h IPMI Kybd Controller Style Interface

07h (see a.
below)

02h IPMI Block Transfer Interface
08h (see b.
below

00h SERCOS Interface Standard (IEC
61491)

09h 00h CANbus

a. The register interface definitions for the Intelligent Platform Management Interface
(Sub-Class 07h) are in the IPMI specification.

b. There is no register level definition for the SERCOS Interface standard. For more
information see IEC 61491.

Base Class 0Dh

This base class is defined for all types of wireless controllers. Several sub-class values
are defined. There are no specific register-level programming interfaces defined.

Base Class Sub-Class Interface Meaning
00 00h iRDA compatible controller

0Dh 01h 00h Consumer IR controller
10h 00h RF controller
11h 00h Bluetooth
12h 00h Broadband
80h 00h Other type of wireless controller

Revision 2.3

275

Base Class 0Eh

This base class is defined for intelligent I/O controllers. The primary characteristic of
this base class is that the I/O function provided follows some sort of generic definition for
an I/O controller.

Base Class Sub-Class Interface Meaning
0Eh 00 xxh Intelligent I/O (I2O) Architecture

Specification 1.0
00h Message FIFO at offset 040h

The specification for Intelligent I/O Architecture I/O can be downloaded from:
ftp.intel.com/pub/IAL/i2o/

Base Class 0Fh

This base class is defined for satellite communication controllers. Controllers of this type
are used to communicate with satellites.

Base Class Sub-Class Interface Meaning
01h 00h TV

0Fh 02h 00h Audio
03h 00h Voice
04h 00h Data

Base Class 10h

This base class is defined for all types of encryption and decryption controllers. Several
sub-class values are defined. There are no register-level interfaces defined.

Base Class Sub-Class Interface Meaning
00h 00h Network and computing en/decryption

10h 10h 00h Entertainment en/decryption
80h 00h Other en/decryption

Base Class 11h

This base class is defined for all types of data acquisition and signal processing
controllers. Several sub-class values are defined. There are no register-level interfaces
defined.

Base Class Sub-Class Interface Meaning
00h 00h DPIO modules
01h 00h Performance counters

11h 10h 00h Communications synchronization plus
time and frequency test/measurement

20h 00h Management card
80h 00h Other data acquisition/signal

processing controllers

Revision 2.3

276

Revision 2.3

277

Appendix E
System Transaction Ordering

Many programming tasks, especially those controlling intelligent peripheral devices
common in PCI systems, require specific events to occur in a specific order. If the
events generated by the program do not occur in the hardware in the order intended by
the software, a peripheral device may behave in a totally unexpected way. PCI
transaction ordering rules are written to give hardware the flexibility to optimize
performance by rearranging certain events that do not affect device operation, yet strictly
enforce the order of events that do affect device operation.

One performance optimization that PCI systems are allowed to do is the posting of
memory write transactions. Posting means the transaction is captured by an intermediate
agent; e.g., a bridge from one bus to another, so that the transaction completes at the
source before it actually completes at the intended destination. This allows the source to
proceed with the next operation while the transaction is still making its way through the
system to its ultimate destination.

While posting improves system performance, it complicates event ordering. Since the
source of a write transaction proceeds before the write actually reaches its destination,
other events that the programmer intended to happen after the write may happen before
the write. Many of the PCI ordering rules focus on posting buffers requiring them to be
flushed to keep this situation from causing problems.

If the buffer flushing rules are not written carefully, however, deadlock can occur. The
rest of the PCI transaction ordering rules prevent the system buses from deadlocking
when posting buffers must be flushed.

Simple devices do not post outbound transactions. Therefore, their requirements are
much simpler than those presented here for bridges. Refer to Section 3.2.5.1. for the
requirements for simple devices.

The focus of the remainder of this appendix is on a PCI-to-PCI bridge. This allows the
same terminology to be used to describe a transaction initiated on either interface and is
easier to understand. To apply these rules to other bridges, replace a PCI transaction
type with its equivalent transaction type of the host bus (or other specific bus). While
the discussion focuses on a PCI-to-PCI bridge, the concepts can be applied to all bridges.

Revision 2.3

278

The ordering rules for a specific implementation may vary. This appendix covers the
rules for all accesses traversing a bridge assuming that the bridge can handle multiple
transactions at the same time in each direction. Simpler implementations are possible
but are not discussed here.

E.1 Producer - Consumer Ordering Model

The Producer - Consumer model for data movement between two masters is an example
of a system that would require this kind of ordering. In this model, one agent, the
Producer, produces or creates the data and another agent, the Consumer, consumes or
uses the data. The Producer and Consumer communicate between each other via a flag
and a status element. The Producer sets the flag when all the data has been written and
then waits for a completion status code. The Consumer waits until it finds the flag set,
then it resets the flag, consumes the data, and writes the completion status code. When
the Producer finds the completion status code, it clears it and the sequence repeats.
Obviously, the order in which the flag and data are written is important. If some of the
Producer’s data writes were posted, then without buffer-flushing rules it might be
possible for the Consumer to see the flag set before the data writes had completed. The
PCI ordering rules are written such that no matter which writes are posted, the Consumer
can never see the flag set and read the data until the data writes are finished. This
specification refers to this condition as “having a consistent view of data.” Notice that if
the Consumer were to pass information back to the Producer in addition to the status
code, the order of writing this additional information and the status code becomes
important, just as it was for the data and flag.

In practice, the flag might be a doorbell register in a device or it might be a main-
memory pointer to data located somewhere else in memory. And the Consumer might
signal the Producer using an interrupt or another doorbell register, rather than having the
Producer poll the status element. But in all cases, the basic need remains the same; the
Producer’s writes to the data area must complete before the Consumer observes that the
flag has been set and reads the data.

This model allows the data, the flag, the status element, the Producer, and the Consumer
to reside anywhere in the system. Each of these can reside on different buses and the
ordering rules maintain a consistent view of the data. For example, in Figure E-1, the
agent producing the data, the flag, and the status element reside on Bus 1, while the
actual data and the Consumer of the data both reside on Bus 0. The Producer writes the
last data and the PCI-to-PCI bridge between Bus 0 and 1 completes the access by posting
the data. The Producer of the data then writes the flag changing its status to indicate that
the data is now valid for the Consumer to use. In this case, the flag has been set before
the final datum has actually been written (to the final destination). PCI ordering rules
require that when the Consumer of the data reads the flag (to determine if the data is
valid), the read will cause the PCI-to-PCI bridge to flush the posted write data to the
final destination before completing the read. When the Consumer determines the data is
valid by checking the flag, the data is actually at the final destination.

Revision 2.3

279

PCI-PCI
Bridge

Producer Flag

PCI Bus 1

PCI Bus 0

Consumer Data

Status

Figure E-1: Example Producer - Consumer Model

The ordering rules lead to the same results regardless of where the Producer, the
Consumer, the data, the flag, and the status element actually reside. The data is always
at the final destination before the Consumer can read the flag. This is true even when all
five reside on different bus segments of the system. In one configuration, the data will
be forced to the final destination when the Consumer reads the flag. In another
configuration, the read of the flag occurs without forcing the data to its final destination;
however, the read request of the actual data pushes the final datum to the final
destination before completing the read.

A system may have multiple Producer-Consumer pairs operating simultaneously, with
different data - flag-status sets located all around the system. But since only one
Producer can write to a single data-flag set, there are no ordering requirements between
different masters. Writes from one master on one bus may occur in one order on one
bus, with respect to another master’s writes, and occur in another order on another bus.
In this case, the rules allow for some writes to be rearranged; for example, an agent on
Bus 1 may see Transaction A from a master on Bus 1 complete first, followed by
Transaction B from another master on Bus 0. An agent on Bus 0 may see Transaction B
complete first followed by Transaction A. Even though the actual transactions complete
in a different order, this causes no problem since the different masters must be
addressing different data-flag sets.

E.2. Summary of PCI Ordering Requirements

Following is a summary of the general PCI ordering requirements presented in
Section 3.2.5. These requirements apply to all PCI transactions, whether they are using
Delayed Transactions or not.

General Requirements

1. The order of a transaction is determined when it completes. Transactions terminated
with Retry are only requests and can be handled by the system in any order.

2. Memory writes can be posted in both directions in a bridge. I/O and Configuration
writes are not posted. (I/O writes can be posted in the Host Bridge, but some

Revision 2.3

280

restrictions apply.) Read transactions (Memory, I/O, or Configuration) are not
posted.

3. Posted memory writes moving in the same direction through a bridge will complete
on the destination bus in the same order they complete on the originating bus.

4. Write transactions crossing a bridge in opposite directions have no ordering
relationship.

5. A read transaction must push ahead of it through the bridge any posted writes
originating on the same side of the bridge and posted before the read. Before the
read transaction can complete on its originating bus, it must pull out of the bridge
any posted writes that originated on the opposite side and were posted before the
read command completes on the read-destination bus.

6. A bridge can never make the acceptance (posting) of a memory write transaction as a
target contingent on the prior completion of a non-locked transaction as a master on
the same bus. Otherwise, a deadlock may occur. Bridges are allowed to refuse to
accept a memory write for temporary conditions which are guaranteed to be resolved
with time. A bridge can make the acceptance of a memory write transaction as a
target contingent on the prior completion of locked transaction as a master only if
the bridge has already established a locked operation with its intended target.

The following is a summary of the PCI ordering requirements specific to Delayed
Transactions, presented in Section 3.3.3.3.

Delayed Transaction Requirements

1. A target that uses Delayed Transactions may be designed to have any number of
Delayed Transactions outstanding at one time.

2. Only non-posted transactions can be handled as Delayed Transactions.

3. A master must repeat any transaction terminated with Retry since the target may be
using a Delayed Transaction.

4. Once a Delayed Request has been attempted on the destination bus, it must continue
to be repeated until it completes on the destination bus. Before it is attempted on the
destination bus, it is only a request and may be discarded at any time.

5. A Delayed Completion can only be discarded when it is a read from a prefetchable
region, or if the master has not repeated the transaction in 215 clocks.

6. A target must accept all memory writes addressed to it, even while completing a
request using Delayed Transaction termination.

7. Delayed Requests and Delayed Completions are not required to be kept in their
original order with respect to themselves or each other.

8. Only a Delayed Write Completion can pass a Posted Memory Write. A Posted
Memory Write must be given an opportunity to pass everything except another
Posted Memory Write.

9. A single master may have any number of outstanding requests terminated with
Retry. However, if a master requires one transaction to be completed before another,
it cannot attempt the second one on PCI until the first one has completed.

Revision 2.3

281

E.3. Ordering of Requests

A transaction is considered to be a request when it is presented on the bus. When the
transaction is terminated with Retry, it is still considered a request. A transaction
becomes complete or a completion when data actually transfers (or is terminated with
Master-Abort or Target-Abort). The following discussion will refer to transactions as
being a request or completion depending on the success of the transaction.

A transaction that is terminated with Retry has no ordering relationship with any other
access. Ordering of accesses is only determined when an access completes (transfers
data). For example, four masters A, B, C, and D reside on the same bus segment and all
desire to generate an access on the bus. For this example, each agent can only request a
single transaction at a time and will not request another until the current access
completes. The order in which transactions complete are based on the algorithm of the
arbiter and the response of the target, not the order in which each agent’s REQ# signal
was asserted. Assuming that some requests are terminated with Retry, the order in
which they complete is independent of the order they were first requested. By changing
the arbiter’s algorithm, the completion of the transactions can be any sequence (i.e., A,
B, C, and then D or B, D, C, and then A, and so on). Because the arbiter can change the
order in which transactions are requested on the bus, and, therefore, the completion of
such transactions, the system is allowed to complete them in any order it desires. This
means that a request from any agent has no relationship with a request from any other
agent. The only exception to this rule is when LOCK# is used, which is described later.

Take the same four masters (A, B, C, and D) used in the previous paragraph and
integrate them onto a single piece of silicon (a multi-function device). For a multi-
function device, the four masters operate independent of each other, and each function
only presents a single request on the bus for this discussion. The order their requests
complete is the same as if they where separate agents and not a multi-function device,
which is based on the arbitration algorithm. Therefore, multiple requests from a single
agent may complete in any order, since they have no relationship to each other.

Another device, not a multi-function device, has multiple internal resources that can
generate transactions on the bus. If these different sources have some ordering
relationship, then the device must ensure that only a single request is presented on the
bus at any one time. The agent must not attempt a subsequent transaction until the
previous transaction completes. For example, a device has two transactions to complete
on the bus, Transaction A and Transaction B and A must complete before B to preserve
internal ordering requirements. In this case, the master cannot attempt B until A has
completed.

The following example would produce inconsistent results if it were allowed to occur.
Transaction A is to a flag that covers data, and Transaction B accesses the actual data
covered by the flag. Transaction A is terminated with Retry, because the addressed
target is currently busy or resides behind a bridge. Transaction B is to a target that is
ready and will complete the request immediately. Consider what happens when these
two transactions are allowed to complete in the wrong order. If the master allows
Transaction B to be presented on the bus after Transaction A was terminated with Retry,
Transaction B can complete before Transaction A. In this case, the data may be accessed
before it is actually valid. The responsibility to prevent this from occurring rests with
the master, which must block Transaction B from being attempted on the bus until
Transaction A completes. A master presenting multiple transactions on the bus must
ensure that subsequent requests (that have some relationship to a previous request) are

Revision 2.3

282

not presented on the bus until the previous request has completed. The system is
allowed to complete multiple requests from the same agent in any order. When a master
allows multiple requests to be presented on the bus without completing, it must repeat
each request independent of how any of the other requests complete.

E.4. Ordering of Delayed Transactions

A Delayed Transaction progresses to completion in three phases:

1. Request by the master

2. Completion of the request by the target

3. Completion of the transaction by the master

During the first phase, the master generates a transaction on the bus, the target decodes
the access, latches the information required to complete the access, and terminates the
request with Retry. The latched request information is referred to as a Delayed Request.
During the second phase, the target independently completes the request on the
destination bus using the latched information from the Delayed Request. The result of
completing the Delayed Request on the destination bus produces a Delayed Completion,
which consists of the latched information of the Delayed Request and the completion
status (and data if a read request). During the third phase, the master successfully re-
arbitrates for the bus and reissues the original request. The target decodes the request
and gives the master the completion status (and data if a read request). At this point, the
Delayed Completion is retired and the transaction has completed.

The number of simultaneous Delayed Transactions a bridge is capable of handling is
limited by the implementation and not by the architecture. Table E-1 represents the
ordering rules when a bridge in the system is capable of allowing multiple transactions to
proceed in each direction at the same time. Each column of the table represents an
access that was accepted by the bridge earlier, while each row represents a transaction
just accepted. The contents of the box indicate what ordering relationship the second
transaction must have to the first.

PMW - Posted Memory Write is a transaction that has completed on the originating bus
before completing on the destination bus and can only occur for Memory Write and
Memory Write and Invalidate commands.

DRR - Delayed Read Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be an I/O Read, Configuration Read,
Memory Read, Memory Read Line, or Memory Read Multiple commands. As
mentioned earlier, once a request has been attempted on the destination bus, it must
continue to be repeated until it completes on the destination bus. Before it is attempted
on the destination bus the DRR is only a request and may be discarded at any time to
prevent deadlock or improve performance, since the master must repeat the request later.

DWR - Delayed Write Request is a transaction that must complete on the destination bus
before completing on the originating bus and can be an I/O Write or Configuration Write
command. Note: Memory Write and Memory Write and Invalidate commands must be
posted (PMW) and not be completed as DWR. As mentioned earlier, once a request has
been attempted on the destination bus, it must continue to be repeated until it completes.
Before it is attempted on the destination bus, the DWR is only a request and may be
discarded at any time to prevent deadlock or improve performance, since the master
must repeat the request later.

Revision 2.3

283

DRC - Delayed Read Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus to complete. The DRC contains the
data requested by the master and the status of the target (normal, Master-Abort, Target-
Abort, parity error, etc.).

DWC - Delayed Write Completion is a transaction that has completed on the destination
bus and is now moving toward the originating bus. The DWC does not contain the data
of the access, but only status of how it completed (Normal, Master-Abort, Target-Abort,
parity error, etc.). The write data has been written to the specified target.

No - indicates that the subsequent transaction is not allowed to complete before the
previous transaction to preserve ordering in the system. The four No boxes found in
column 2 prevent PMW data from being passed by other accesses and thereby maintain a
consistent view of data in the system.

Yes - indicates that the subsequent transaction must be allowed to complete before the
previous one or a deadlock can occur.

When blocking occurs, the PMW is required to pass the Delayed Transaction. If the
master continues attempting to complete Delayed Requests, it must be fair in attempting
to complete the PMW. There is no ordering violation when these subsequent
transactions complete before a prior transaction.

Yes/No - indicates that the bridge designer may choose to allow the subsequent
transaction to complete before the previous transaction or not. This is allowed since there
are no ordering requirements to meet or deadlocks to avoid. How a bridge designer
chooses to implement these boxes may have a cost impact on the bridge implementation
or performance impact on the system.

Table E-1: Ordering Rules for a Bridge

Row pass Col.?
PMW
(Col 2)

DRR
(Col 3)

DWR
(Col 4)

DRC
(Col 5)

DWC
(Col 6)

PMW (Row 1) No1 Yes5 Yes5 Yes7 Yes7

DRR (Row 2) No2 Yes/No Yes/No Yes/No Yes/No

DWR (Row 3) No3 Yes/No Yes/No Yes/No Yes/No

DRC (Row 4) No4 Yes6 Yes6 Yes/No Yes/No

DWC (Row 5) Yes/No Yes6 Yes6 Yes/No Yes/No

Rule 1 - A subsequent PMW cannot pass a previously accepted PMW.
(Col 2, Row 1)

Posted Memory write transactions must complete in the order they are
received. If the subsequent write is to the flag that covers the data, the
Consumer may use stale data if write transactions are allowed to pass each
other.

Rule 2 - A read transaction must push posted write data to maintain ordering.
(Col 2, Row 2)

For example, a memory write to a location followed by an immediate
memory read of the same location returns the new value (refer to
Section 3.10, item 6, for possible exceptions). Therefore, a memory read

Revision 2.3

284

cannot pass posted write data. An I/O read cannot pass a PMW, because the
read may be ensuring the write data arrives at the final destination.

Rule 3 - A non-postable write transaction must push posted write data to maintain
ordering. (Col 2, Row 3)

A Delayed Write Request may be the flag that covers the data previously
written (PMW), and, therefore, the write flag cannot pass the data that it
potentially covers.

Rule 4 - A read transaction must pull write data back to the originating bus of the
read transaction. (Col 2, Row 4)

For example, the read of a status register of the device writing data to
memory must not complete before the data is pulled back to the originating
bus; otherwise, stale data may be used.

Rule 5 - A Posted Memory Write must be allowed to pass a Delayed Request (read
or write) to avoid deadlocks. (Col 3 and Col 4, Row 1)

A deadlock can occur when bridges that support Delayed Transactions are
used with bridges that do not support Delayed Transactions. Referring to
Figure E-2, a deadlock can occur when Bridge Y (using Delayed
Transactions) is between Bridges X and Z (designed to a previous version of
this specification and not using Delayed Transactions). Master 1 initiates a
read to Target 1 that is forwarded through Bridge X and is queued as a
Delayed Request in Bridge Y. Master 3 initiates a read to Target 3 that is
forwarded through Bridge Z and is queued as a Delayed Request in Bridge
Y. After Masters 1 and 3 are terminated with Retry, Masters 2 and 4 begin
memory write transactions of a long duration addressing Targets 2 and 4
respectively, which are posted in the write buffers of Bridges X and Z
respectively. When Bridge Y attempts to complete the read in either
direction, Bridges X and Z must flush their posted write buffers before
allowing the Read Request to pass through it.

If the posted write buffers of Bridges X and Z are larger than those of Bridge
Y, Bridge Y’s buffers will fill. If posted write data is not allowed to pass the
DRR, the system will deadlock. Bridge Y cannot discard the read request
since it has been attempted, and it cannot accept any more write data until
the read in the opposite direction is completed. Since this condition exists in
both directions, neither DRR can complete because the other is blocking the
path. Therefore, the PMW data is required to pass the DRR when the DRR
blocks forward progress of PMW data.

The same condition exists when a DWR sits at the head of both queues,
since some old bridges also require the posting buffers to be flushed on a
non-posted write cycle.

Rule 6 – A Delayed Completion (read or write) must be allowed to pass a Delayed
Request (read or write) to avoid deadlocks. (Cols 3 and 4, Rows 4 and 5)

A deadlock can occur when two bridges that support Delayed Transactions
are requesting accesses to each other. The common PCI bus segment is on
the secondary bus of Bridge A and the primary bus for Bridge B. If neither
bridge allows Delayed Completions to pass the Delayed Requests, neither
can make progress.

Revision 2.3

285

For example, suppose Bridge A’s request to Bridge B completes on Bridge
B’s secondary bus, and Bridge B’s request completes on Bridge A’s primary
bus. Bridge A’s completion is now behind Bridge B’s request and Bridge
B’s completion is behind Bridge A’s request. If neither bridge allows
completions to pass the requests, then a deadlock occurs because neither
master can make progress.

Rule 7 - A Posted Memory Write must be allowed to pass a Delayed Completion
(read or write) to avoid deadlocks. (Col 5 and Col 6, Row 1)

As in the example for Rule 5, another deadlock can occur in the system
configuration in Figure E-2. In this case, however, a DRC sits at the head of
the queues in both directions of Bridge Y at the same time. Again the old
bridges (X and Z) contain posted write data from another master. The
problem in this case, however, is that the read transaction cannot be repeated
until all the posted write data is flushed out of the old bridge and the master
is allowed to repeat its original request. Eventually, the new bridge cannot
accept any more posted data because its internal buffers are full and it
cannot drain them until the DRC at the other end completes. When this
condition exists in both directions, neither DRC can complete because the
other is blocking the path. Therefore, the PMW data is required to pass the
DRC when the DRC blocks forward progress of PMW data.

The same condition exists when a DWC sits at the head of both queues.

Transactions that have no ordering constraints

Some transactions enqueued as Delayed Requests or Delayed Completions have no
ordering relationship with any other Delayed Requests or Delayed Completions. The
designer can (for performance or cost reasons) allow or disallow Delayed Requests to
pass other Delayed Requests and Delayed Completions that were previously enqueued.

Delayed Requests can pass other Delayed Requests (Cols 3 and 4, Rows 2 and 3).

Since Delayed Requests have no ordering relationship with other Delayed
Requests, these four boxes are don’t cares.

Delayed Requests can pass Delayed Completions (Col 5 and 6, Rows 2 and 3).

Since Delayed Requests have no ordering relationship with Delayed
Completions, these four boxes are don’t cares.

Delayed Completions can pass other Delayed Completions (Col 5 and 6, Rows 4 and
5).

Since Delayed Completions have no ordering relationship with other Delayed
Completions, these four boxes are don’t cares.

Delayed Write Completions can pass posted memory writes or be blocked by them
(Col 2, Row 5).

If the DWC is allowed to pass a PMW or if it remains in the same order,
there is no deadlock or data inconsistencies in either case. The DWC data
and the PMW data are moving in opposite directions, initiated by masters
residing on different buses accessing targets on different buses.

Revision 2.3

286

PCI-PCI
Bridge Y

(pre 2.1)

Master 2

PCI Bus N

PCI-PCI
Bridge X

Master 1 Target 3

(Rev. 2.1)

Master 3

PCI Bus P

PCI-PCI
Bridge Z

Master 4Target 2

(pre 2.1)

Target 1

Target 4

Figure E-2: Example System with PCI-to-PCI Bridges

E.5. Delayed Transactions and LOCK#

The bridge is required to support LOCK# when a transaction is initiated on its primary
bus (and is using the lock protocol), but is not required to support LOCK# on
transactions that are initiated on its secondary bus. If a locked transaction is initiated on
the primary bus and the bridge is the target, the bridge must adhere to the lock semantics
defined by this specification. The bridge is required to complete (push) all PMWs
(accepted from the primary bus) onto the secondary bus before attempting the lock on
the secondary bus. The bridge may discard any requests enqueued, allow the locked
transaction to pass the enqueued requests, or simply complete all enqueued transactions
before attempting the locked transaction on the secondary interface. Once a locked
transaction has been enqueued by the bridge, the bridge cannot accept any other
transaction from the primary interface until the lock has completed except for a
continuation of the lock itself by the lock master. Until the lock is established on the
secondary interface, the bridge is allowed to continue enqueuing transactions from the
secondary interface, but not the primary interface. Once lock has been established on the
secondary interface, the bridge cannot accept any posted write data moving toward the
primary interface until LOCK# has been released (FRAME# and LOCK# deasserted on
the same rising clock edge). (In the simplest implementation, the bridge does not accept
any other transactions in either direction once lock is established on the secondary bus,
except for locked transactions from the lock master.) The bridge must complete PMW,
DRC, and DWC transactions moving toward the primary bus before allowing the locked
access to complete on the originating bus. The preceding rules are sufficient for
deadlock free operation. However, an implementation may be more or less restrictive,
but, in all cases must ensure deadlock-free operation.

E.6. Error Conditions

A bridge is free to discard data or status of a transaction that was completed using
Delayed Transaction termination when the master has not repeated the request within 210

PCI clocks (about 30 µs at 33 MHz). However, it is recommended that the bridge not
discard the transaction until 215 PCI clocks (about 983 µs at 33 MHz) after it acquired
the data or status. The shorter number is useful in a system where a master designed to a
previous version of this specification frequently fails to repeat a transaction exactly as

Revision 2.3

287

first requested. In this case, the bridge may be programmed to discard the abandoned
Delayed Completion early and allow other transactions to proceed. Normally, however,
the bridge would wait the longer time, in case the repeat of the transaction is being
delayed by another bridge or bridges designed to a previous version of this specification
that did not support Delayed Transactions.

When this timer (referred to as the Discard Timer) expires, the device is required to
discard the data; otherwise, a deadlock may occur.

Note: When the transaction is discarded, data may be destroyed. This
occurs when the discarded Delayed Completion is a read to a non-
prefetchable region.

When the Discard Timer expires, the device may choose to report or ignore the error.
When the data is prefetchable, it is recommended that the device ignore the error since
system integrity is not affected. However, when the data is not prefetchable, it is
recommended that the device report the error to its device driver since system integrity is
affected. A bridge may assert SERR# since it typically does not have a device driver.

Revision 2.3

288

Revision 2.2

289

Appendix F
Exclusive Accesses

The use of LOCK# is only allowed to be supported by a host bus bridge, a PCI-to-PCI
bridge, or an expansion bus bridge. In earlier versions of this specification, other
devices were allowed to initiate and respond to exclusive accesses using LOCK#.
However, the usefulness of a hardware-based lock mechanism has diminished and is
only useful to prevent a deadlock or to provide backward compatibility. Therefore, all
other devices are required to ignore LOCK#.

A host bus bridge can only initiate an exclusive access to prevent a deadlock as
described in Section 3.10., item 5, or to provide backward compatibility to an expansion
bus bridge that supports exclusive access. A host bus bridge can only honor an exclusive
access as a target when providing compatibility to an access initiated by an expansion
bus bridge that supports exclusive accesses. (No other agent can initiate a locked access
to the Host Bus bridge.)

A PCI-to-PCI bridge is only allowed to propagate an exclusive access from its primary
bus to its secondary bus and is never allowed to initiate an exclusive access of its own
initiative. A PCI-to-PCI bridge is required to ignore LOCK# when acting as a target on
its secondary interface.

An expansion bus bridge is only allowed to initiate an exclusive access to provide
backward compatibility. This means that the expansion bus supports a hardware based
exclusive access mechanism (i.e., EISA and not ISA). The expansion bus bridge can
honor an exclusive access as a target when supported by the expansion bus; otherwise,
LOCK# has no meaning to the bridge.

The remainder of this chapter is only applicable to a device that is allowed to support
LOCK#. Note: existing software that does not support the PCI lock usage rules has the
potential of not working correctly. Software is not allowed to use an exclusive access to
determine if a device is present.

F.1. Exclusive Accesses on PCI

PCI provides an exclusive access mechanism, which allows non-exclusive accesses to
proceed in the face of exclusive accesses. This allows a master to hold a hardware lock
across several accesses without interfering with non-exclusive data transfer, such as real-
time video between two devices on the same bus segment. The mechanism is based on

Revision 2.3

290

locking only the PCI resource to which the original locked access was targeted and is
called a resource lock.

LOCK# indicates whether the master desires the current transaction to complete as an
exclusive access or not. Control of LOCK# is obtained under its own protocol in
conjunction with GNT#. Refer to Section F.2. for details. Masters and targets not
involved in the exclusive access are allowed to proceed with non-exclusive accesses
while another master retains ownership of LOCK#. However, when compatibility
dictates, the arbiter can optionally grant the agent that owns LOCK# exclusive access to
the bus until LOCK# is released. This is referred to as complete bus lock and is
described in Section F.7. For a resource lock, the target of the access guarantees
exclusivity.

The following paragraphs describe the behavior of a master and a target for a locked
operation. The rules of LOCK# will be stated for both the master and target. A detailed
discussion of how to start, continue, and complete an exclusive access operation follows
the discussion of the rules. A discussion of how a target behaves when it supports a
resource lock will follow the description of the basic lock mechanism. The concluding
section will discuss how to implement a complete bus lock.

Master rules for supporting LOCK#:

1. A master can access only a single resource60 during a lock operation.

2. The first transaction of a lock operation must be a memory read transaction.

3. LOCK# must be asserted the clock61 following the address phase and kept asserted
to maintain control.

4. LOCK# must be released if the initial transaction of the lock request is terminated
with Retry62. (Lock was not established.)

5. LOCK# must be released whenever an access is terminated by Target-Abort or
Master-Abort.

6. LOCK# must be deasserted between consecutive63 lock operations for a minimum
of one clock while the bus is in the Idle state.

60 In previous versions of this specification, a minimum of 16 bytes (naturally aligned) was considered the
lock resource. A device was permitted to lock its entire memory address space. This definition still applies
for an upstream locked access to main memory. For downstream locked access, a resource is the PCI-to-
PCI bridge or the Expansion Bus bridge that is addressed by the locked operation.

61 For a SAC, this is the clock after the address phase. For a DAC, this occurs the clock after the first
address phase.

62 Once lock has been established, the master retains ownership of LOCK# when terminated with Retry or
Disconnect.

63 Consecutive refers to back-to-back locked operations and not a continuation of the current locked
operation.

Revision 2.3

291

Target Rules for supporting LOCK#:

1. A bridge acting as a target of an access locks itself when LOCK# is deasserted
during the address phase and is asserted on the following clock.

2. Once lock is established64, a bridge remains locked until both FRAME# and
LOCK# are sampled deasserted regardless of how the transaction is terminated.

3. The bridge is not allowed to accept any new requests (from either interface) while it
is in a locked condition except from the owner of LOCK#.

F.2. Starting an Exclusive Access

When an agent needs to do an exclusive operation, it checks the internally tracked state
of LOCK# before asserting REQ#. The master marks LOCK# busy anytime LOCK# is
asserted (unless it is the master that owns LOCK#) and not busy when both FRAME#
and LOCK# are deasserted. If LOCK# is busy (and the master does not own LOCK#),
the agent must delay the assertion of REQ# until LOCK# is available.

While waiting for GNT#, the master continues to monitor LOCK#. If LOCK# is ever
busy, the master deasserts REQ# because another agent has gained control of LOCK#.

When the master is granted access to the bus and LOCK# is not busy, ownership of
LOCK# has been obtained. The master is free to perform an exclusive operation when
the current transaction completes and is the only agent on the bus that can drive LOCK#.
All other agents must not drive LOCK#, even when they are the current master.

Figure F-1 illustrates starting an exclusive access. LOCK# is deasserted during the
address phase (one clock for SAC or DAC) to request a lock operation, which must be
initiated with a memory read command. LOCK# must be asserted the clock following
the first address phase, which occurs on clock 3 to keep the target in the locked state.
This allows the current master to retain ownership of LOCK# beyond the end of the
current transaction.

64 A locked operation is established when LOCK# is deasserted during the address phase, asserted the
following clock, and data is transferred during the current transaction.

Revision 2.3

292

C L K

1 2 3 4

L O C K #

IR D Y #

T R D Y #

F R A M E #

D E V S E L #

5

A D D A T AA D D

Figure F-1: Starting an Exclusive Access

A locked operation is not established on the bus until completion of the first data phase
of the first transaction (IRDY# and TRDY# asserted). If the target terminates the first
transaction with Retry, the master terminates the transaction and releases LOCK#. Once
the first data phase completes with both TRDY# and IRDY# asserted, the exclusive
operation is established and the master keeps LOCK# asserted until either the lock
operation completes or an error (Master-Abort or Target-Abort) causes an early
termination. Target termination of Retry and Disconnect is normal termination even
when a lock operation is established. When a master is terminated by the target with
Disconnect or Retry after the lock has been established, the target is indicating it is
currently busy and unable to complete the requested data phase. The target will accept
the access when it is not busy and continues to honor the lock by excluding all other
accesses. The master continues to control LOCK# if this condition occurs. Non-
exclusive accesses to unlocked targets on the same PCI bus segment are allowed to occur
while LOCK# is asserted. However, transactions to other bus segments are not allowed
to cross a locked bridge.

When a bridge is locked, it may only accept requests when LOCK# is deasserted during
the address phase (which indicates that the transaction is a continuation of the exclusive
access sequence by the master that established the lock). If LOCK# is asserted during
the address phase, a locked bridge will terminate all accesses by asserting STOP# with
TRDY# deasserted (Retry). A locked target remains in the locked state until both
FRAME# and LOCK# are deasserted.

Delayed Transactions and Lock

A locked transaction can be completed using Delayed Transaction termination. All the
rules of LOCK# still apply except the bridge must consider itself locked when it
enqueues the request even though no data has transferred. This condition is referred to
as a target-lock. While in target-lock, the bridge enqueues no new requests on the
primary interface and terminates all requests with Retry. The bridge locks its secondary
interface when lock is established on the secondary bus and starts checking for the repeat

Revision 2.3

293

of the original lock request on the primary interface. A target-lock becomes a full-lock
when the master repeats the locked request and the bridge transfers data. At this point,
the master has established the lock.

A bridge acting as a target that supports exclusive accesses must sample LOCK# with
the address and on a subsequent clock. If the bridge performs medium or slow decode, it
must latch LOCK# during the first address phase. Otherwise, the bridge cannot
determine if the access is a lock operation when decode completes. A bridge marks
itself as target-locked if LOCK# is deasserted during the first address phase and is
asserted on the next clock. A bridge does not mark itself target-locked if LOCK# is
deasserted the clock following the first address phase and is free to respond to other
requests.

F.3. Continuing an Exclusive Access

Figure F-2 shows a master continuing an exclusive access. However, this access may or
may not complete the exclusive operation. When the master is granted access to the bus,
it starts another exclusive access to the target it previously locked. LOCK# is deasserted
during the address phase to continue the lock. The locked device accepts and responds
to the request. LOCK# is asserted on clock 3 to keep the target in the locked state and
allow the current master to retain ownership of LOCK# beyond the end of the current
transaction.

When the master is continuing the lock operation, it continues to assert LOCK#. When
the master completes the lock operation, it deasserts LOCK# after the completion of the
last data phase which occurs on clock 5. Refer to Section F.5. for more information on
completing an exclusive access.

CLK

FRAME#

AD

LOCK#

ADDRESS DATA

IRDY#

TRDY#

1 2 3 54

Release

Continue

DEVSEL#

Figure F-2: Continuing an Exclusive Access

Revision 2.3

294

F.4. Accessing a Locked Agent

Figure F-3 shows a master trying a non-exclusive access to a locked agent. When
LOCK# is asserted during the address phase, and if the target is locked (full-lock or
target-lock), it terminates the transaction with Retry and no data is transferred.

CLK

FRAME#

AD

LOCK#

ADDRESS DATA

IRDY#

TRDY#

(driven low by master holding lock)

1 2 3 54

STOP#

DEVSEL#

Figure F-3: Accessing a Locked Agent

F.5. Completing an Exclusive Access

During the final transaction of an exclusive operation, LOCK# is deasserted so the target
will accept the request, and then re-asserted until the exclusive access terminates
successfully. The master may deassert LOCK# at any time when the exclusive
operation has completed. However, it is recommended (but not required) that LOCK#
be deasserted with the deassertion of IRDY# following the completion of the last data
phase of the locked operation. Releasing LOCK# at any other time may result in a
subsequent transaction being terminated with Retry unnecessarily. A locked agent
unlocks itself whenever LOCK# and FRAME# are deasserted.

If a master wants to execute two independent exclusive operations on the bus, it must
ensure a minimum of one clock between operations where both FRAME# and LOCK#
are deasserted. (For example, the fast back-to-back case depicted in Figure 3-16 (clock
3) cannot lock both transactions.) This ensures any target locked by the first operation is
released prior to starting the second operation. (An agent must unlock itself when
FRAME# and LOCK# are both deasserted on the same clock.)

Revision 2.3

295

F.6. Complete Bus Lock

The PCI resource lock can be converted into a complete bus lock by having the arbiter
not grant the bus to any other agent while LOCK# is asserted. If the first access of the
locked sequence is terminated with Retry, the master must deassert both REQ# and
LOCK#. If the first access completes normally, the complete bus lock has been
established and the arbiter will not grant the bus to any other agent. If the arbiter granted
the bus to another agent when the complete bus lock was being established, the arbiter
must remove the other grant to ensure that complete bus lock semantics are observed. A
complete bus lock may have a significant impact on the performance of the system,
particularly the video subsystem. All non-exclusive accesses will not proceed while a
complete bus lock operation is in progress

Revision 2.3

296

Revision 2.3

297

Appendix G
I/O Space Address

Decoding for Legacy Devices

A function that supports a PC legacy function (IDE, VGA, etc.) is allowed to claim those
addresses associated with the specific function when the I/O Space (see Figure 6-2)
enable bit is set.

These addresses are not requested using a Base Address register but are assigned by
initialization software. If a device identifies itself as a legacy function (class code), the
initialization software grants the device permission to claim the I/O legacy addresses by
setting the device’s I/O Space enable bit.

If the device does not own all bytes within a DWORD of a legacy I/O range, it is
required to use AD[1::0] to complete the decode before claiming the access by asserting
DEVSEL#. If a legacy function is addressed by an I/O transaction, but does not own all
bytes being accessed in the DWORD, it is required to terminate the transaction with
Target-Abort. An expansion bus bridge is granted an exception to this requirement when
performing subtractive decode. The bridge is permitted to assume that all bytes within
the DWORD being addressed reside on the expansion bus. This means that the bridge is
not required to check the encoding of AD[1::0], and the byte enables before passing the
request to the expansion bus to complete.

Revision 2.3

298

Revision 2.3

299

Appendix H
Capability IDs

This appendix describes the current Capability IDs. Each defined capability must have a
PCI SIG-assigned ID code. These codes are assigned and handled much like the Class
Codes.

Section 6.7. of this specification provides a full description of the Extended Capabilities
mechanism for PCI devices.

Table H-1: Capability IDs

ID Capability

0 Reserved

1 PCI Power Management Interface – This capability structure provides a
standard interface to control power management features in a PCI
device. It is fully documented in the PCI Power Management Interface
Specification. This document is available from the PCI SIG as
described in Chapter 1 of this specification.

2 AGP – This capability structure identifies a controller that is capable of
using Accelerated Graphics Port features. Full documentation can be
found in the Accelerated Graphics Port Interface Specification. This is
available at http://www.agpforum.org.

3 VPD – This capability structure identifies a device that supports Vital
Product Data. Full documentation of this feature can be found in
Section 6.4. and Appendix I of this specification.

Revision 2.3

300

Table H-1: Capability IDs (continued)

ID Capability

4 Slot Identification – This capability structure identifies a bridge that
provides external expansion capabilities. Full documentation of this
feature can be found in the PCI to PCI Bridge Architecture
Specification. This document is available from the PCI SIG as
described in Chapter 1 of this specification.

5 Message Signaled Interrupts – This capability structure identifies a PCI
function that can do message signaled interrupt delivery as defined in
Section 6.8. of this specification.

6 CompactPCI Hot Swap – This capability structure provides a standard
interface to control and sense status within a device that supports Hot
Swap insertion and extraction in a CompactPCI system. This capability
is documented in the CompactPCI Hot Swap Specification PICMG 2.1,
R1.0 available at http://www.picmg.org.

7 PCI-X

8 Something for AMD

9 Vendor Specific – This ID allows device vendors to use the capability
mechanism for vendor specific information. The layout of the
information is vendor specific, except that the byte immediately
following the “Next” pointer in the capability structure is defined to be a
length field. This length field provides the number of bytes in the
capability structure (including the ID and Next pointer bytes). An
example vendor specific usage is a device that is configured in the final
manufacturing steps as either a 32-bit or 64-bit PCI agent and the
Vendor Specific capability structure tells the device driver which
features the device supports.

0xA Debug port

0xB CompactPCI central resource control – Definition of this capability can
be found in the PICMG 2.13 Specification (http://www.picmg.com).

0xC PCI Hot-Plug – This ID indicates that the associated device conforms to
the Standard Hot-Plug Controller model.

0xD-
0xFF

Reserved

Revision 2.3

301

Appendix I
Vital Product Data

Vital Product Data (VPD) is information that uniquely identifies hardware and,
potentially, software elements of a system. The VPD can provide the system with
information on various Field Replaceable Units such as part number, serial number, and
other detailed information. The objective from a system point of view is to make this
information available to the system owner and service personnel. Support of VPD is
optional.

VPD resides in a storage device (for example a serial EEPROM) in a PCI device.
Access to the VPD is provided using the Capabilities List in Configuration Space. The
VPD capability structure has the following format.

31 30 16 15 8 7 0

F VPD Address Pointer to Next ID ID = 03h

VPD Data

Figure I-1: VPD Capability Structure

Register Field Descriptions:

ID—Capability structure ID 03h, which is a read-only field.

Pointer to Next ID—Pointer to the next capability structure, or 00h if this is the last
structure in the Capability List. This is a read-only field.

VPD Address—DWORD-aligned byte address of the VPD to be accessed. The register
is read/write, and the initial value at power-up is indeterminate.

F—A flag used to indicate when the transfer of data between the VPD Data register and
the storage component is completed. The flag register is written when the VPD Address
register is written. To read VPD information, a zero is written to the flag register when
the address is written to the VPD Address register. The hardware device will set the flag
to a one when 4 bytes of data from the storage component have been transferred to the
VPD Data register. Software can monitor the flag and, after it is set to a one, read the
VPD information from the VPD Data register. If either the VPD Address or VPD Data
register is written, prior to the flag bit being set to a one, the results of the original read
operation are unpredictable. To write VPD information, to the read/write portion of the
VPD space, write the data to the VPD Data register. Then write the address of where the

Revision 2.3

302

VPD data is to be stored, into the VPD Address register and write the flag bit to a one (at
the time the address is written). The software then monitors the flag bit and when it is
set to zero (by device hardware), the VPD data (all 4 bytes) has been transferred from the
VPD Data register to the storage component. If either the VPD Address or VPD Data
register is written, prior to the flag bit being set to a zero, the results of the write
operation to the storage component are unpredictable.

VPD Data—VPD data can be read through this register. The least significant byte of
this register (at offset 4 in this capability structure) corresponds to the byte of VPD at the
address specified by the VPD Address register. The data read from or written to this
register uses the normal PCI byte transfer capabilities. Four bytes are always transferred
between this register and the VPD storage component. Reading or writing data outside
of the VPD space in the storage component is not allowed. The VPD (both the read only
items and the read/write fields) is stored information and will have no direct control of
any device operations. The initial value of this register at power up is indeterminate.

The VPD Address field is a byte address but must specify a DWORD-aligned location
(i.e., the bottom two bits must be zero).

Every board may contain VPD. When a PCI expansion board contains multiple devices,
VPD, if provided, is required on only one of them but may be included in each. PCI
devices designed exclusively for use on the system board may also support the optional
VPD registers.

VPD in a PCI expansion board uses two of the predefined tag item names previously
defined in the Plug and Play ISA Specification and two new ones defined specifically for
PCI VPD. The PnP ISA tag item names that are used are: Identifier String (0x02) for a
Large Resource Data Type and End Tag (0xF) for a Small Resource Data Type. The
new large resource item names for VPD are VPD-R with a value of 0x10 for read only
data and VPD-W with a value of 0x11 for read/write data.

Vital Product Data is made up of Small and Large Resource Data Types as described in
the Plug and Play ISA Specification, Version 1.0a. Use of these data structures allows
leveraging of data types already familiar to the industry and minimizes the amount of
additional resources needed for support. This data format consists of a series of
“tagged” data structures. The data types from the Plug and Play ISA Specification,
Version 1.0a, are reproduced in the following figures.

Offset Field Name

Byte 0 Value = 0xxxxyyyb (Type = Small(0), Small Item Name = xxxx,
length = yy bytes

Bytes 1 to n Actual information

Figure I-2: Small Resource Data Type Tag Bit Definitions

Revision 2.3

303

Offset Field Name

Byte 0 Value = 1xxxxxxxB (Type = Large(1), Large item name =
xxxxxxx)

Byte 1 Length of data items bits[7:0] (lsb)

Byte 2 Length of data items bits[15:8] (msb)

Byte 3 to n Actual data items

Figure I-3: Large Resource Data Type Tag Bit Definitions

The Identifier String (0x02) tag is the first VPD tag and provides the product name of the
device. One VPD-R (0x10) tag is used as a header for the read-only keywords, and one
VPD-W (0x11) tag is used as a header for the read-write keywords. The VPD-R list
(including tag and length) must checksum to zero. The storage component containing
the read/write data is a non-volatile device that will retain the data when powered off.
Attempts to write the read-only data will be executed as a no-op. The last tag must be
the End Tag (0x0F). A small example of the resource data type tags used in a typical
VPD is shown in Figure I-4.

TAG Identifier String

TAG VPD-R list containing one or more VPD
keywords

TAG VPD-W list containing one or more VPD
keywords

TAG End Tag

Figure I-4: Resource Data Type Flags for a Typical VPD

Revision 2.3

304

I.1. VPD Format
Information fields within a VPD resource type consist of a three-byte header followed by
some amount of data (see Figure I-5). The three-byte header contains a two-byte
keyword and a one-byte length.

A keyword is a two-character (ASCII) mnemonic that uniquely identifies the
information in the field. The last byte of the header is binary and represents the length
value (in bytes) of the data that follows.

Keyword Length Data

Byte 0 Byte 1 Byte 2 Bytes 3 through n

Figure I-5: VPD Format

VPD keywords are listed in two categories: read-only fields and read/write fields.
Unless otherwise noted, keyword data fields are provided as ASCII characters. Use of
ASCII allows keyword data to be moved across different enterprise computer systems
without translation difficulty. An example of the “expansion board serial number” VPD
item is as follows:

Keyword: SN

Length: 08h

Data: “00000194”

I.2. VPD Compatibility
Optional VPD was supported in prior versions of this specification. For information on
the previous definition of VPD, see PCI Local Bus Specification, Revision 2.1.

I.3. VPD Definitions
This section describes the current VPD large and small resource data tags plus the VPD
keywords. This list may be enhanced at any time. Companies wishing to define a new
keyword should contact the PCI SIG. All unspecified values are reserved for SIG
assignment.

Revision 2.3

305

I.3.1. VPD Large and Small Resource Data Tags

VPD is contained in four types of Large and Small Resource Data Tags. The following
tags and VPD keyword fields may be provided in PCI devices.

Large resource type Identifier
String Tag
(0x2)

This tag is the first item in the VPD storage
component. It contains the name of the board in
alphanumeric characters.

Large resource type VPD-R
Tag
(0x10)

This tag contains the read only VPD keywords for a
board.

Large resource type VPD-W
Tag
(0x11)

This tag contains the read/write VPD keywords for
the board.

Small resource type End Tag
(0xF)

This tag identifies the end of VPD in the storage
component.

I.3.1.1. Read-Only Fields

PN Board Part Number This keyword is provided as an extension to the
Device ID (or Subsystem ID) in the Configuration
Space header in Figure 6-1.

EC EC Level of the Board The characters are alphanumeric and represent the
engineering change level for this board.

MN Manufacture ID This keyword is provided as an extension to the
Vendor ID (or Subsystem Vendor ID) in the
Configuration Space header in Figure 6-1. This
allows vendors the flexibility to identify an
additional level of detail pertaining to the sourcing of
this device.

SN Serial Number The characters are alphanumeric and represent the
unique board Serial Number.

Vx Vendor Specific This is a vendor specific item and the characters are
alphanumeric. The second character (x) of the
keyword can be 0 through Z.

Revision 2.3

306

CP Extended Capability This field allows a new capability to be identified in
the VPD area. Since dynamic control/status cannot
be placed in VPD, the data for this field identifies
where, in the device’s memory or I/O address space,
the control/status registers for the capability can be
found. Location of the control/status registers is
identified by providing the index (a value between 0
and 5) of the Base Address register that defines the
address range that contains the registers, and the
offset within that Base Address register range where
the control/status registers reside. The data area for
this field is four bytes long. The first byte contains
the ID of the extended capability. The second byte
contains the index (zero based) of the Base Address
register used. The next two bytes contain the offset
(in little endian order) within that address range
where the control/status registers defined for that
capability reside.

RV Checksum and
Reserved

The first byte of this item is a checksum byte. The
checksum is correct if the sum of all bytes in VPD
(from VPD address 0 up to and including this byte)
is zero. The remainder of this item is reserved space
(as needed) to identify the last byte of read-only
space. The read-write area does not have a
checksum. This field is required.

I.3.1.2 Read/Write Fields

Vx Vendor Specific This is a vendor specific item and the characters
are alphanumeric. The second character (x) of
the keyword can be 0 through Z.

Yx System Specific This is a system specific item and the characters
are alphanumeric. The second character (x) of
the keyword can be 0 through 9 and B through
Z.

YA Asset Tag Identifier This is a system specific item and the characters
are alphanumeric. This keyword contains the
system asset identifier provided by the system
owner.

RW Remaining Read/Write
Area

This descriptor is used to identify the unused
portion of the read/write space. The product
vendor initializes this parameter based on the
size of the read/write space or the space
remaining following the Vx VPD items. One or
more of the Vx, Yx, and RW items are required.

Revision 2.3

307

I.3.2. VPD Example

The following is an example of a typical VPD.

Offset Item Value

0 Large Resource Type ID String Tag
(0x02)

0x82 “Product Name”

1 Length 0x0021

3 Data “ABCD Super-Fast
Widget Controller”

36 Large Resource Type VPD-R Tag (0x10) 0x90

37 Length 0x0059

39 VPD Keyword “PN”

41 Length 0x08

42 Data “6181682A”

50 VPD Keyword “EC”

52 Length 0x0A

53 Data “4950262536”

63 VPD Keyword “SN”

65 Length 0x08

66 Data “00000194”

74 VPD Keyword “MN”

76 Length 0x04

77 Data “1037”

81 VPD Keyword “RV”

83 Length 0x2C

84 Data Checksum

85 Data Reserved (0x00)

Revision 2.3

308

Offset Item Value

128 Large Resource Type VPD-W Tag (0x11) 0x91

129 Length 0x007C

131 VPD Keyword “V1”

133 Length 0x05

134 Data “65A01”

139 VPD Keyword “Y1”

141 Length 0x0D

142 Data “Error Code 26”

155 VPD Keyword “RW”

157 Length 0x61

158 Data Reserved (0x00)

255 Small Resource Type End Tag (0xF) 0x78

Revision 2.3

309

Glossary

add-in card A circuit board that plugs into a system board and
adds functionality.

64-bit extension A group of PCI signals that support a 64-bit data path.

Address Spaces A reference to the three separate physical address
regions of PCI: Memory, I/O, and Configuration.

agent An entity that operates on a computer bus.

arbitration latency The time that the master waits after having asserted
REQ# until it receives GNT#, and the bus returns to
the idle state after the previous master’s transaction.

backplate The metal plate used to fasten an add-in card to the
system chassis.

BIST register An optional register in the header region used for
control and status of built-in self tests.

bridge The logic that connects one computer bus to another,
allowing an agent on one bus to access an agent on
the other.

burst transfer The basic bus transfer mechanism of PCI. A burst is
comprised of an address phase and one or more data
phases.

bus commands Signals used to indicate to a target the type of
transaction the master is requesting.

bus device A bus device can be either a bus master or target:

• master -- drives the address phase and transaction
boundary (FRAME#). The master initiates a
transaction and drives data handshaking (IRDY#)
with the target.

• target -- claims the transaction by asserting
DEVSEL# and handshakes the transaction
(TRDY#) with the initiator.

Revision 2.3

310

catastrophic error An error that affects the integrity of system operation
such as a detected address parity error or an invalid
PWR_GOOD signal.

central resources Bus support functions supplied by the host system,
typically in a PCI compliant bridge or standard
chipset.

command See bus command.

Configuration Address Space A set of 64 registers (DWORDs) used for
configuration, initialization, and catastrophic error
handling. This address space consists of two regions:
a header region and a device-dependent region.

configuration transaction Bus transaction used for system initialization and
configuration via the configuration address space.

DAC Dual address cycle. A PCI transaction where a 64-bit
address is transferred across a 32-bit data path in two
clock cycles. See also SAC.

deadlock When two devices (one a master, the other a target)
require the other device to respond first during a
single bus transaction. For example, a master
requires the addressed target to assert TRDY# on a
write transaction before the master will assert IRDY#.
(This behavior is a violation of this specification.)

Delayed Transaction The process of a target latching a request and
completing it after the master was terminated with
Retry.

device See PCI device.

device dependent region The last 48 DWORDs of the PCI configuration space.
The contents of this region are not described in this
document.

Discard Timer When this timer expires, a device is permitted to
discard unclaimed Delayed Completions (refer to
Section 3.3.3.3.3. and Appendix E).

DWORD A 32-bit block of data.

EISA Extended Industry Standard Architecture expansion
bus, based on the IBM PC AT bus, but extended to 32
bits of address and data.

expansion bus bridge A bridge that has PCI as its primary interface and
ISA, EISA, or Micro Channel as its secondary
interface. This specification does not preclude the use
of bridges to other buses, although deadlock and other
system issues for those buses have not been
considered.

Function A set of logic that is represented by a single
Configuration Space.

Revision 2.3

311

header region The first 16 DWORDs of a device’s Configuration
Space. The header region consists of fields that
uniquely identify a PCI device and allow the device to
be generically controlled.
See also device dependent region.

hidden arbitration Arbitration that occurs during a previous access so
that no PCI bus cycles are consumed by arbitration,
except when the bus is idle.

host bus bridge A low latency path through which the processor may
directly access PCI devices mapped anywhere in the
memory, I/O, or configuration address spaces.

Idle state Any clock period that the bus is idle (FRAME# and
IRDY# deasserted).

Initialization Time The period of time that begins when RST# is
deasserted and completes 225 PCI clocks later.

ISA Industry Standard Architecture expansion bus built
into the IBM PC AT computer.

keepers Pull-up resistors or active components that are only
used to sustain a signal state.

latency See arbitration latency, master data latency, target
initial latency, and target subsequent latency.

Latency Timer A mechanism for ensuring that a bus master does not
extend the access latency of other masters beyond a
specified value.

master An agent that initiates a bus transaction.

Master-Abort A termination mechanism that allows a master to
terminate a transaction when no target responds.

master data latency The number of PCI clocks until IRDY# is asserted
from FRAME# being asserted for the first data phase
or from the end of the previous data phase.

MC The Micro Channel architecture expansion bus as
defined by IBM for its PS/2 line of personal
computers.

multi-function device A device that implements from two to eight functions.
Each function has its own Configuration Space that is
addressed by a different encoding of AD[10::08]
during the address phase of a configuration
transaction.

multi-master device A single-function device that contains more than one
source of bus master activity. For example, a device
that has a receiver and transmitter that operate
independently.

NMI Non-maskable interrupt.

operation A logical sequence of transactions, e.g., Lock.

Revision 2.3

312

output driver An electrical drive element (transistor) for a single
signal on a PCI device.

PCI connector An expansion connector that conforms to the
electrical and mechanical requirements of the PCI
local bus standard.

PCI device A device that (electrical component) conforms to the
PCI specification for operation in a PCI local bus
environment.

PGA Pin grid array component package.

phase One or more clocks in which a single unit of
information is transferred, consisting of:

• an address phase (a single address transfer in one
clock for a single address cycle and two clocks
for a dual address cycle)

• a data phase (one transfer state plus zero or more
wait states)

positive decoding A method of address decoding in which a device
responds to accesses only within an assigned address
range. See also subtractive decoding.

POST Power-on self test. A series of diagnostic routines
performed when a system is powered up.

pullups Resistors used to insure that signals maintain stable
values when no agent is actively driving the bus.

run time The time that follows Initialization Time.

SAC Single address cycle. A PCI transaction where a
32-bit address is transferred across a 32-bit data path
in a single clock cycle. See also DAC.

single-function device A device that contains only one function.

sideband signals Any signal not part of the PCI specification that
connects two or more PCI-compliant agents and has
meaning only to those agents.

Special Cycle A message broadcast mechanism used for
communicating processor status and/or (optionally)
logical sideband signaling between PCI agents.

stale data Data in a cache-based system that is no longer valid
and, therefore, must be discarded.

stepping The ability of an agent to spread assertion of qualified
signals over several clocks.

subtractive decoding A method of address decoding in which a device
accepts all accesses not positively decoded by another
agent. See also positive decoding.

Revision 2.3

313

system board A circuit board containing the basic functions (e.g.,
CPU, memory, I/O, and add-in card connectors) of a
computer.

target An agent that responds (with a positive
acknowledgment by asserting DEVSEL#) to a bus
transaction initiated by a master.

Target-Abort A termination mechanism that allows a target to
terminate a transaction in which a fatal error has
occurred, or to which the target will never be able to
respond.

target initial latency The number of PCI clocks that the target takes to
assert TRDY# for the first data transfer.

target subsequent latency The number of PCI clocks that the target takes to
assert TRDY# from the end of the previous data
phase of a burst.

termination A transaction termination brings bus transactions to
an orderly and systematic conclusion. All
transactions are concluded when FRAME# and
IRDY# are deasserted (an idle cycle). Termination
may be initiated by the master or the target.

transaction An address phase plus one or more data phases.

turnaround cycle A bus cycle used to prevent contention when one
agent stops driving a signal and another agent begins
driving it. A turnaround cycle must last one clock
and is required on all signals that may be driven by
more than one agent.

wait state A bus clock in which no transfer occurs.

Revision 2.3

314

